【題目】數(shù)學(xué)課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn).∠AEF=90°,且EF交正方形外角∠DCG的角平分線CF于點(diǎn)F,求證:AE=EF

經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點(diǎn)M,連接ME,則AM=EC,易證AME≌△ECF,所以AE=EF

在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:

1)小穎提出:如圖2,如果把點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn),其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;

2)小華提出:如圖3,點(diǎn)EBC的延長線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AE=EF”仍然成立.你認(rèn)為小華的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由.

【答案】1)正確.證明見解析;(2)正確.證明見解析.

【解析】

1)在上取一點(diǎn),使,連接,根據(jù)已知條件利用判定,因?yàn)槿热切蔚膶?yīng)邊相等,所以

2)在的延長線上取一點(diǎn),使,連接,根據(jù)已知利用判定,因?yàn)槿热切蔚膶?yīng)邊相等,所以

解:(1)正確.

證明:在上取一點(diǎn),使,連接

,

,

是外角平分線,

,

,

,

,

2)正確.

證明:如圖示,在的延長線上取一點(diǎn),使,連接

,

平分,

,

,

四邊形是正方形,

,

,

,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,對角線ACBD相交于點(diǎn)O.要使四邊形ABCD是正方形,還需添加一組條件.下面給出了五組條件:①ABAD,且ACBD;②ABAD,且ACBD;③ABAD,且ABAD;④ABBD,且ABBD;⑤OBOC,且OBOC.其中正確的是_____(填寫序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,AF是O切線,CD是垂直于AB的弦,垂足為E,過點(diǎn)C作DA的平行線與AF相交于點(diǎn)F,CD=,BE=2.

求證:(1)四邊形FADC是菱形;

(2)FC是O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AB=60cm,∠A=30°,點(diǎn)D從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)B出發(fā)沿BC方向以1cm/秒的速度向點(diǎn)C勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0t≤30).過點(diǎn)DDFAC于點(diǎn)F,連接DE,EF

1)填空:四邊形BEFD_________;

2)當(dāng)t=______時(shí),四邊形BEFD能夠成為菱形。

3)當(dāng)t為何值時(shí)?△DEF為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)學(xué)生去測長江的寬度,某學(xué)生在長江北岸點(diǎn)A處觀測到長江對岸水邊有一點(diǎn)C,測得CA東南方向上,沿長江邊向東前行200米到達(dá)B處,測得CB南偏東30°的方向上.

(1)畫出學(xué)生測量的示意圖;

(2)請你根據(jù)以上數(shù)據(jù),幫助該同學(xué)計(jì)算出長江的寬度(精確到0.1 m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

為解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我們可以將x2﹣1視為一個(gè)整體,然后設(shè)x2﹣1=y,則原方程化為y2﹣5y+4=0,解此方程得:y1=1,y2=4.

當(dāng)y=1時(shí),x2﹣1═1,x=±

當(dāng)y=4時(shí),x2﹣1═4,x=±

∴原方程的解為:x1=,x2=﹣,x3=,x4=﹣

以上方法叫做換元法解方程,達(dá)到了降次的目的,體現(xiàn)了轉(zhuǎn)化思想.

運(yùn)用上述方法解方程:x4﹣8x2+12=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,點(diǎn)By軸上,OA=1,先將菱形OABC沿x軸正方向無滑動(dòng)翻轉(zhuǎn),每次轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2019次,點(diǎn)B的落點(diǎn)依次為,則的坐標(biāo)為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】生活與數(shù)學(xué)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

(1)姆同學(xué)在某月的日歷上圈出2×2個(gè)數(shù),正方形的方框內(nèi)的四個(gè)數(shù)的和是48,那么這四個(gè)數(shù)是_______.

(2)麗也在上面的日歷上圈出2×2個(gè)數(shù),斜框內(nèi)的四個(gè)數(shù)的和是46,則它們分別是_____.

(3)莉也在日歷上圈出5個(gè)數(shù),呈十字框形,它們的和是55,則中間的數(shù)是______.

(4)某月有5個(gè)星期日的和是75,則這個(gè)月中最后一個(gè)星期日是______號(hào)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀理解)

點(diǎn)AB、C為數(shù)軸上三點(diǎn),如果點(diǎn)CA、B之間且到A的距離是點(diǎn)CB的距離3倍,那么我們就稱點(diǎn)C{A,B}的奇點(diǎn).

例如,如圖1,點(diǎn)A表示的數(shù)為﹣3,點(diǎn)B示的數(shù)為1.表示0的點(diǎn)C到點(diǎn)A的距離是3,到點(diǎn)B的距離是1,那么點(diǎn)C{A,B}的奇點(diǎn);又如,表示﹣2的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是3,那么點(diǎn)D就不是{A,B}的奇點(diǎn),但點(diǎn)D{B,A}的奇點(diǎn).

(知識(shí)運(yùn)用)

如圖2M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為﹣3,點(diǎn)N所表示的數(shù)為5

1)數(shù)     所表示的點(diǎn)是{M,N}的奇點(diǎn);數(shù)     所表示的點(diǎn)是{N,M}的奇點(diǎn);

2)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為﹣50,點(diǎn)B所表示的數(shù)為30.現(xiàn)有一動(dòng)點(diǎn)P從點(diǎn)B出發(fā)向左運(yùn)動(dòng),當(dāng)P點(diǎn)運(yùn)動(dòng)到數(shù)軸上的什么位置時(shí),PAB中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇點(diǎn)?

查看答案和解析>>

同步練習(xí)冊答案