【題目】定義:若點(diǎn)P(a,b)在函數(shù)y=的圖象上,將以a為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱為函數(shù)y=的一個(gè)“派生函數(shù)”.例如:點(diǎn)(2, )在函數(shù)y=的圖象上,則函數(shù)y=2x2+ 稱為函數(shù)y=的一個(gè)“派生函數(shù)”.現(xiàn)給出以下兩個(gè)命題:
(1)存在函數(shù)y=的一個(gè)“派生函數(shù)”,其圖象的對稱軸在y軸的右側(cè)
(2)函數(shù)y=的所有“派生函數(shù)”的圖象都經(jīng)過同一點(diǎn),下列判斷正確的是( 。
A. 命題(1)與命題(2)都是真命題
B. 命題(1)與命題(2)都是假命題
C. 命題(1)是假命題,命題(2)是真命題
D. 命題(1)是真命題,命題(2)是假命題
【答案】C
【解析】試題分析:(1)根據(jù)二次函數(shù)y=ax2+bx的性質(zhì)a、b同號對稱軸在y軸左側(cè),a、b異號對稱軸在y軸右側(cè)即可判斷.(2)根據(jù)“派生函數(shù)”y=ax2+bx,x=0時(shí),y=0,經(jīng)過原點(diǎn),不能得出結(jié)論.
(1)∵P(a,b)在y=上, ∴a和b同號,所以對稱軸在y軸左側(cè),
∴存在函數(shù)y=的一個(gè)“派生函數(shù)”,其圖象的對稱軸在y軸的右側(cè)是假命題.
(2)∵函數(shù)y=的所有“派生函數(shù)”為y=ax2+bx, ∴x=0時(shí),y=0,
∴所有“派生函數(shù)”為y=ax2+bx經(jīng)過原點(diǎn),
∴函數(shù)y=的所有“派生函數(shù)”,的圖象都進(jìn)過同一點(diǎn),是真命題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABN和△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2.
(1)求證:BD=CE;
(2)求證:∠M=∠N.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)α度到△A1B1C1的位置,AB與A1C1相交于點(diǎn)D,AC與A1C1、BC1分別交于點(diǎn)E、F.
(1)求證:△BCF≌△BA1D;
(2)當(dāng)∠C=α度時(shí),判定四邊形A1BCE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).△AOB的三個(gè)頂點(diǎn)A,O,B都在格點(diǎn)上.
(1)畫出△AOB關(guān)于點(diǎn)O成中心對稱的三角形;
(2)畫出△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90后得到的三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題: =3, =0.5, =6, = , =0.
根據(jù)以上算式,回答:
(1) 一定等于a嗎?如果不是,那么 =;
(2)利用你總結(jié)的規(guī)律,計(jì)算: ①若x<2,則 =;
② = .
(3)若a,b,c為三角形的三邊長,化簡: + + .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com