【題目】結(jié)論:
①若a b c 0 ,且abc 0 ,則方程a bx c 0 的解是 x 1
②若a x 1 bx 1 有唯一的解,則a b;
③若b 2a ,則關(guān)于 x 的方程ax b 0a 0的解為 x ;
④若a b c 1,且a 0 ,則 x 1一定是方程ax b c 1的解.其中結(jié)論正確個(gè)數(shù)有( ).
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
【答案】B
【解析】
根據(jù)方程的解的定義,就是能使方程的左右兩邊相等的未知數(shù)的值,即可判斷.
①當(dāng)x=1時(shí),代入方程a+bx+c=0即可得到a+b+c=0,成立,故正確;
②a(x-1)=b(x-1),去括號(hào)得:ax-a=bx-b,即(a-b)x=a-b,則x=1,故正確;
③方程ax+b=0,移項(xiàng)得:ax=-b,則x=-,因?yàn)?/span>b=2a,所以-=2,則x=-2,故錯(cuò)誤;
④把x=1代入方程ax+b+c,得到a+b+c=1,則x=1一定是方程ax+b+c=1的解,故正確.
綜上可得,正確共有3個(gè).
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AD=8cm,AB=6cm.動(dòng)點(diǎn)E從點(diǎn)C開(kāi)始沿邊CB向點(diǎn)B以2cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)C同時(shí)出發(fā)沿邊CD向點(diǎn)D以1cm/s的速度運(yùn)動(dòng)至點(diǎn)D停止.如圖可得到矩形CFHE,設(shè)運(yùn)動(dòng)時(shí)間為x(單位:s),此時(shí)矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,BD是AC邊上的高,延長(zhǎng)BC至E,使DB=DE.
(1)求∠BDE的度數(shù);
(2)求證:△CED為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有理數(shù)的計(jì)算:
(1)1﹣(﹣8)+12+(﹣11);
(2)|﹣|;
(3)﹣12﹣(1﹣)×[6+(﹣3)3];
(4) ×(﹣6)2﹣5.5×8+25.5×8.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣x2+bx+C與x軸交于點(diǎn)A(﹣1,0),B(﹣3,0),與y軸交于點(diǎn)C,頂點(diǎn)為D,拋物線(xiàn)的對(duì)稱(chēng)軸與x軸的交點(diǎn)為E.
(1)求拋物線(xiàn)的解析式及E點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)P是拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),且∠BPD=∠BCA,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)F的坐標(biāo)為(﹣2,4),若點(diǎn)Q在該拋物線(xiàn)的對(duì)稱(chēng)軸上,以Q為圓心的圓過(guò)A、B兩點(diǎn),并且和直線(xiàn)OF相切,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)口袋中放有290個(gè)涂有紅、黑、白三種顏色的質(zhì)地相同的小球.若紅球個(gè)數(shù)是黑球個(gè)數(shù)的2倍多40個(gè).從袋中任取一個(gè)球是白球的概率是.
(1)求袋中紅球的個(gè)數(shù);
(2)求從袋中任取一個(gè)球是黑球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D,E分別是AB,AC上的點(diǎn),BE與CD交與點(diǎn)O,給出下列四個(gè)條件:①∠DBO=∠ECO,②∠BDO=∠CEO,③BD=CE,④OB=OC.
(1)從上述四個(gè)條件中,任選兩個(gè)為條件,可以判定△ABC是等腰三角形?寫(xiě)出所有可能的情況.
(2)選擇(1)中的某一種情形,進(jìn)行說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,已知∠B、∠C的角平分線(xiàn)相交于點(diǎn)O,∠A+∠D =200°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某養(yǎng)殖戶(hù)每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為4萬(wàn)元,可變成本逐年增長(zhǎng),已知該養(yǎng)殖戶(hù)第一年的可變成本為2.6萬(wàn)元,設(shè)可變成本平均每年增長(zhǎng)的百分率為
(1)用含x的代數(shù)式表示低3年的可變成本為 萬(wàn)元;
(2)如果該養(yǎng)殖戶(hù)第3年的養(yǎng)殖成本為7.146萬(wàn)元,求可變成本平均每年的增長(zhǎng)百分率x.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com