【題目】如圖,小明的爸爸在魚池邊開了一塊四邊形土地種了一些蔬菜,爸爸讓小明計算這塊土地的面積,以便估算產(chǎn)值,小明測得AB=4m,BC=3m,CD=13m.DA=12m.又已知∠B=90°,每平方米投入資金80元,預計銷售后產(chǎn)值每平方米480元,試求出這塊土地能產(chǎn)生多少利潤?

【答案】14400

【解析】

連接AC,然后運用勾股定理得逆定理確定三角形ACD是直角三角形,然后運用直角三角形的面積,就可以發(fā)現(xiàn)解答思路.

解:

AB=4m,BC=3m,∠B=90°

∴AC=5

又∵CD=13m.DA=12m

∴AC2+AD2=CD2

∴三角形ACD是直角三角形

∴四邊形ABCD的面積=AB×BC+AC×AD=6+30=36

則這塊土地能產(chǎn)生利潤為:36×(480-80)=14400元

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀理解下面的例題,再按要求解答下列問題:

解方程(2﹣6(+5=0

解:令=y,代入原方程后,得:

y2﹣6y+5=0

(y﹣5)(y﹣1)=0

解得:y1=5 y2=1

=y

=5=1

①當=1時,方程可變?yōu)椋?/span>

x=5(x﹣1)

解得x=

②當=1時,方程可變?yōu)椋?/span>

x=x﹣1

此時,方程無解

檢驗:將x=代入原方程,

最簡公分母不為0,且方程左邊=右面

x=是原方程的根

綜上所述:原方程的根為:x=

根據(jù)以上材料,解關(guān)于x的方程x2++x+=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A是半徑為12cm⊙O上的定點,動點PA出發(fā),以2πcm/s的速度沿圓周逆時針運動,當點P回到點A立即停止運動.

(1)如果∠POA=90°,求點P運動的時間;

(2)如果點BOA延長線上的一點,AB=OA,那么當點P運動的時間為2s時,判斷直線BP⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=AC.

(1)如圖1,如果∠BAD=30°,ADBC上的高,AD=AE,則∠EDC=_____度;

(2)如圖2,如果∠BAD=40°,ADBC上的高,AD=AE,則∠EDC=_______度;

(3)思考:通過以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關(guān)系?請用式子表示:____________________.

(4)如圖3,如果AD不是BC上的高,AD=AE,是否仍有上述關(guān)系?如有,請你寫出來,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖所示,正方形的邊長為1,邊上的一個動點(點、不重合),以為一邊向正方形外作正方形,連接的延長線于點.

1)求證:①≌△. .

2)當平分時,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=8cm,BC=6cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒2cm,設(shè)運動的時間為t.

1)當t為何值時,CP把△ABC的周長分成相等的兩部分;

2)當t為何值時,CP把△ABC的面積分成相等的兩部分;

3)在(2)的情況下,若過點PPE//BC,且在BC上有一點F,PE=CF,連結(jié)PF,

BE,試探索PFBE的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,一次函數(shù)y=kx+b的圖象與正比例函數(shù)y=x交于點A,并與y軸交于點B(0,4),△AOB的面積為6,求kb的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?

(3)設(shè)該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)函數(shù)學習中積累的知識與經(jīng)驗,李老師要求學生探究函數(shù)y=+1的圖象.同學們通過列表、描點、畫圖象,發(fā)現(xiàn)它的圖象特征,請你補充完整.

(1)函數(shù)y=+1的圖象可以由我們熟悉的函數(shù)   的圖象向上平移   個單位得到;

(2)函數(shù)y=+1的圖象與x軸、y軸交點的情況是:   ;

(3)請你構(gòu)造一個函數(shù),使其圖象與x軸的交點為(2,0),且與y軸無交點,這個函數(shù)表達式可以是   

查看答案和解析>>

同步練習冊答案