【題目】先閱讀理解下面的例題,再按要求解答下列問題:
解方程()2﹣6()+5=0
解:令=y,代入原方程后,得:
y2﹣6y+5=0
(y﹣5)(y﹣1)=0
解得:y1=5 y2=1
∵=y
∴=5或=1
①當=1時,方程可變?yōu)椋?/span>
x=5(x﹣1)
解得x=
②當=1時,方程可變?yōu)椋?/span>
x=x﹣1
此時,方程無解
檢驗:將x=代入原方程,
最簡公分母不為0,且方程左邊=右面
∴x=是原方程的根
綜上所述:原方程的根為:x=
根據(jù)以上材料,解關于x的方程x2++x+=0.
科目:初中數(shù)學 來源: 題型:
【題目】【問題情境】
課外興趣小組活動時,老師提出了如下問題:
如圖①,△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD至點E,使DE=AD,連接BE.請根據(jù)小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB,依據(jù)是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三邊關系”可求得AD的取值范圍是 .
解后反思:題目中出現(xiàn)“中點”、“中線”等條件,可考慮延長中線構造全等三角形,把分散的已知條件和所求證的結論集中到同一個三角形之中.
【初步運用】
如圖②,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求線段BF的長.
【靈活運用】
如圖③,在△ABC中, ∠A=90°,D為BC中點, DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.試猜想線段BE、CF、EF三者之間的等量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,AB、AC的垂直平分線的交點D恰好落在BC邊上
(1)判斷△ABC的形狀
(2)若點A在線段DC的垂直平分線上,求的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,AB=AC,EF=EG,△ABC≌△EFG,AD⊥BC于點D,EH⊥FG于點H
(1) 直接寫出AD、EH的數(shù)量關系:___________________
(2) 將△EFG沿EH剪開,讓點E和點C重合
① 按圖2放置△EHG,將線段CD沿EH平移至HN,連接AN、GN,求證:AN⊥GN
② 按圖3放置△EHG,B、C(E)、H三點共線,連接AG交EH于點M.若BD=1,AD=3,求CM的長度
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10cm,BC=6cm,若動點P從點C開始出發(fā),按C→A→B→C的路徑運動,且速度為每秒2cm,設出發(fā)的時間為t秒.
(1)填空:AC= cm;
(2)若點P恰好在∠ABC的角平分線上,求t的值;
(3)當t為何值時,△BPC為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,三角形ABC三個頂點A,B,C的坐標分別為A(1,2),B(4,3),C(3,1).把三角形A1B1C1向右平移4個單位長度,再向下平移3個單位長度,恰好得到三角形ABC,試寫出三角形A1B1C1三個頂點的坐標,作出三角形ABC向右平移1個單位向下平移2個單位的圖形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,按以下步驟作圖:
①以B為圓心,任意長為半徑作弧,交AB于D,交BC于E;
②分別以D,E為圓心,以大于DE的同樣長為半徑作弧,兩弧交于點F;
③作射線BF交AC于G.
如果BG=CG,∠A=60°,那么∠ACB的度數(shù)為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明的爸爸在魚池邊開了一塊四邊形土地種了一些蔬菜,爸爸讓小明計算這塊土地的面積,以便估算產(chǎn)值,小明測得AB=4m,BC=3m,CD=13m.DA=12m.又已知∠B=90°,每平方米投入資金80元,預計銷售后產(chǎn)值每平方米480元,試求出這塊土地能產(chǎn)生多少利潤?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com