【題目】如圖1是一個長為2a,寬為2b的 長方形,沿圖中虛線剪開分成四塊小長方形,然后按如圖2的形狀拼成一個正方形。
(1)圖2的陰影部分的正方形的邊長是 .
(2)用兩種不同的方法求圖中陰影部分的面積.
(方法1)S陰影= ;
(方法2)S陰影= ;
(3)觀察如圖2,寫出(a+b)2、(a-b)2,ab三個代數(shù)式之間的等量關(guān)系.
(4)根據(jù)(3)題中的等量關(guān)系,解決問題:若x+y=10,xy=16,求x-y的值。
【答案】(1)a-b;(2)(a+b)2-4ab,(a-b)2;(3)(a+b)2-4ab=(a-b)2;(4)±6
【解析】
(1)觀察圖意直接得出正方形的邊長是a-b;(2)利用大正方形的面積減去4個小長方形的面積,或者直接利用(1)的條件求出小正方形的面積;(3)把(2)中的兩個代數(shù)式聯(lián)立即可;(4)類比(3)求出(x-y)2,再開方即可.
(1)觀察圖意直接得出正方形的邊長是a-b;
(2)利用大正方形的面積減去4個小長方形的面積則S陰影=(a+b)2-4ab,
直接利用(1)的條件求出小正方形的面積則S陰影=(a-b)2;
(3)由S陰影的兩種寫法得(a+b)2-4ab=(a-b)2;
(4)由(3)可得(x-y)2=(x+y)2-4xy,
則(x-y)2=102-4×16=36,
∴x-y=±6,
科目:初中數(shù)學 來源: 題型:
【題目】已知線段AB⊥直線l于點B,點D在直線l上,分別以AB,AD為邊作等邊三角形ABC和等邊三角形ADE,直線CE交直線l于點F
(1)當點F在線段BD上時,如圖1,線段DF,CE,CF之間的數(shù)量關(guān)系是 ;
(2)當點F在線段DB的延長線上時,如圖2.
①(1)中的數(shù)量關(guān)系是否仍然成立?若成立,請寫出證明過程;若不成立,請重新寫出正確的結(jié)論,并寫出證明過程;
②若等邊△ABC和等邊△ADE的邊長分別是和,DF=3,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察圖形,解答問題:
(1)按下表已填寫的形式填寫表中的空格:
圖① | 圖② | 圖③ | |
三個角上三個數(shù)的積 | 1×(﹣1)×2=﹣2 | (﹣3)×(﹣4)×(﹣5)=﹣60 |
|
三個角上三個數(shù)的和 | 1+(﹣1)+2=2 | (﹣3)+(﹣4)+(﹣5)=﹣12 |
|
積與和的商 | (﹣2)÷2=﹣1 |
|
|
(2)請用你發(fā)現(xiàn)的規(guī)律求出圖④中的數(shù)x.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,在四邊形 中,,,,,,求證:.
(2)如圖,在離水面高度為 米的岸上,有人用繩子拉船靠岸,開始時繩子 的長為 米,此人以 米每秒的速度收繩, 秒后船移動到點 的位置,問船向岸邊移動了多少米?(假設(shè)繩子是直的,結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD為∠BAC的平分線,DE⊥AB于E,DF⊥AC于F,
(1)證明AE=AF;
(2)若△ABC面積是36cm2,AB=10cm,AC=8cm,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角三角形ABC中,∠ACB=90°,D、E是邊AB上兩點,且CE所在直線垂直平分線段AD,CD平分∠BCE,BC=2,則AB=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校準備購進一批甲、乙兩種辦公桌若干張,并且每買1張辦公桌必須買2把椅子,椅子每把100元,若學校購進20張甲種辦公桌和15張乙種辦公桌共花費24000元;購買10張甲種辦公桌比購買5張乙種辦公桌多花費2000元.
(1)求甲、乙兩種辦公桌每張各多少元?
(2)若學校購買甲乙兩種辦公桌共40張,且甲種辦公桌數(shù)量不多于乙種辦公桌數(shù)量的3倍,請你給出一種費用最少的方案,并求出該方案所需費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題情境)學習《探索全等三角形條件》后,老師提出了如下問題:如圖①,△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍。同學通過合作交流,得到了如下的解決方法:延長AD到E,使DE=AD,連接BE.根據(jù)SAS可證得到△ADC≌△EDB,從而根據(jù)“三角形的三邊關(guān)系”可求得AD的取值范圍是 。解后反思:題目中出現(xiàn)“中點”“中線”等條件,可考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一個三角形中.
(直接運用)如圖②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的邊CD上中線.求證:BE=2AF.
(靈活運用)如圖③,在△ABC中,∠C=90°,D為AB的中點,DE⊥DF,DE交AC于點E,DF交AB于點F,連接EF,試判斷以線段AE、BF、EF為邊的三角形形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩組鄰邊分別相等的四邊形我們稱它為箏形,如圖,在箏形ABCD中,AB=AD,BC=DC,AC,BD相交于點O.
(1)求證:①△ABC≌△ADC;②OB=OD,AC⊥BD;
(2)如果AC=6,BD=4,求箏形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com