【題目】如圖,在平面直角坐標系中,點為坐標原點.拋物線軸于、兩點,交軸于點,直線經過、兩點.

1)求拋物線的解析式;

2)過點作直線軸交拋物線于另一點,過點軸于點,連接,求的值.

【答案】1;(2

【解析】

1)首先求出點B、C的坐標,然后利用待定系數(shù)法求出拋物線的解析式;
2)如圖,過點C作直線CDy軸交拋物線于點D,過點DDEx軸于點E,連接BD,構造RtDEB,欲求銳角三角函數(shù)定義tanBDE,先求線段BE,DE的長度即可.

1)解:∵直線經過、兩點,易得點,

代入拋物線中,得

解之得

∴拋物線的解析式為

2)解:如圖,過點作直線軸交拋物線于點,過點軸于點,連接

∵拋物線的對稱軸為,點,

∴點,從而得,

∵點

中,,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB為⊙O的弦,過點OAB的平行線,交⊙O于點C,直線OC上一點D滿足∠D=∠ACB

1)判斷直線BD與⊙O的位置關系,并證明你的結論;

2)若⊙O的半徑等于4,tanACB,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點為坐標原點,拋物線軸交于點(點在點的左側),與軸正半軸交于點,

1)如圖1,求的值;

2)如圖2,拋物線的頂點坐標是,點是第一象限拋物線上的一點,連接交拋物線的對稱軸于點,設點的橫坐標是,線段的長為,求的函數(shù)關系式;

3)如圖3,在(2)的條件下,當時,過點軸交拋物線于點,點軸下方拋物線上的一個動點,連接軸于點,直線經過點于點,連接,過點于點,若,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形和正六邊形邊長均為1,如圖所示,把正方形放置在正六邊形外,使邊與邊重合,按下列步驟操作:將正方形在正六邊形外繞點逆時針旋轉,使邊與邊重合,完成第一次旋轉;再繞點逆時針旋轉,使邊與邊重合,完成第二次旋轉;此時點經過路徑的長為___________.若按此方式旋轉,共完成六次,在這個過程中點之間距離的最大值是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠A30°,AB6,將RtABC繞點C順時針旋轉,使斜邊ABB點,則線段CA掃過的面積為_____.(結果保留根號和π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華人民共和國《城市道路路內停車泊位設置規(guī)范》規(guī)定:

一、在城市道路范圍內,在不影響行人、車輛通行的情況下,政府有關部門可以規(guī)劃停車泊位.停車泊位的排列方式有三種,如圖所示:

二、雙向通行道路,路幅寬米以上的,可在兩側設停車泊位,路幅寬米到米的,可在單側設停車泊位,路幅寬米以下的,不能設停車泊位;

三、規(guī)定小型停車泊位,車位長米,車位寬米;

四、設置城市道路路內機動車停車泊位后,用于單向通行的道路寬度應不小于.

根據(jù)上述的規(guī)定,在不考慮車位間隔線和車道間隔線的寬度的情況下,如果在一條路幅寬為米的雙向通行車道設置同一種排列方式的小型停車泊位,請回答下列問題:

1)可在該道路兩側設置停車泊位的排列方式為 ;

2)如果這段道路長米,那么在道路兩側最多可以設置停車泊位 .

(參考數(shù)據(jù):,)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形,,,連接,.若繞點旋轉,當最大時,__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖所示,在平面直角坐標系中,半徑均為1個單位長度的半圓O1,O2,O3, 組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2015秒時,點P的坐標是( ).

A.(2014,0) B.(2015,-1) C. (2015,1) D. (2016,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中.

(1)若直線經過、兩點,求直線和拋物線的解析式;

(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標;

(3)設點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標.

查看答案和解析>>

同步練習冊答案