【題目】如圖,點在直線上,過點作,且,點在射線上(點不與點重合),且滿足,,與交于點,過點作于點.設.
(1)用含的代數(shù)式表示的長;
(2)①線段的長是________;
②線段的長是_________;(用含的代數(shù)式表示)
(3)當為何值時,有最小值?并求出這個最小值.
【答案】(1);(2)①;②;(3)時,的最小值.
【解析】
(1)首先證明,然后根據(jù)相似三角形性質(zhì)進一步得出,再結(jié)合勾股定理所得的進一步對式子進行分析求解即可;
(2)①延長和交于點,通過證明,由此進一步得出,然后再證明出,最后利用相似三角形性質(zhì)求出CD即可;②先證明,據(jù)此進一步得出,由此得出,最后進一步證明,從而得出答案即可;
(3)過點作于點,通過證明,由此得出,然后得出,根據(jù)當點運動時,總有,所以當點與點重合,即時,的最小值,由此求出的最小值,最后根據(jù)題意進一步求出即可.
(1)在和中,
∵,90°,
∴,
∴,即,
又根據(jù)勾股定理可得:,
∴,
∴;
(2)
①
如圖,延長和交于點,
∵,,且,
∴,則有,即,
又∵,
∴,
∴,
∵,
∴;
②∵,,
∴∠ABP+∠APB=∠ABP+∠ABQ=90°,
∴∠APB=∠ABQ,
∴,
∴,
∴,
即,
∴,
由①知,結(jié)合可得:,
∴,
∴,
故答案為:①8;②;
(3)
如圖,過點作于點,
∵∠BAP=∠BFP,∠APB=∠FPB,PB=PB,
∴,
∴,
∴,
又∵,
∴當點運動時,總有,
∴當點與點重合,即時,的最小值,
則的最小值.
此時,如圖所示,
其中,即,解得或(不符合題意,舍去).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點為坐標原點,將含30°角的放在第一象限,其中30°角的對邊長為1,斜邊的端點,分別在軸的正半軸,軸的正半軸上滑動,連接,則線段的長的最大值是( )
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與軸交于點、(點在點的左側(cè)),經(jīng)過點的直線:與軸交于點,與拋物線的另一個交點為.
(1)則點的坐標為__________,點的坐標為__________,拋物線的對稱軸為__________;
(2)點是直線下方拋物線上的一點,當時.求面積的最大值;
(3)設為拋物線對稱軸上一點,點在拋物線上,若以點、、、為頂點的四邊形為矩形,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:
(1)2017年“五一”期間,該市周邊景點共接待游客 萬人,扇形統(tǒng)計圖中A景點所對應的圓心角的度數(shù)是 ,并補全條形統(tǒng)計圖.
(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預計2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?
(3)甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王老師在數(shù)學課上帶領(lǐng)同學們做數(shù)學游戲,規(guī)則如下:
游戲規(guī)則
甲任報一個有理數(shù)數(shù)傳給乙;
乙把這個數(shù)減后報給丙;
丙再把所得的數(shù)的絕對值報給丁;
丁再把這個數(shù)的一半減,報出答案.
根據(jù)游戲規(guī)則,回答下面的問題:
(1)若甲報的數(shù)為,則乙報的數(shù)為_________,丁報出的答案是_________;
(2)若甲報的數(shù)為,請列出算式并計算丁報出的答案;
(3)若丁報出的答案是,則直接寫出甲報的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】開學初期,天氣炎熱,水杯需求量大.雙福育才中學門口某超市購進一批水杯,其中A種水杯進價為每個15元,售價為每個25元;B種水杯進價為每個12元,售價為每個20元
(1)該超市平均每天可售出60個A種水杯,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),A種水杯單價每降低1元,則平均每天的銷量可增加10個.為了盡量讓學生得到更多的優(yōu)惠,某天該超市將A種水杯售價調(diào)整為每個m元,結(jié)果當天銷售A種水杯獲利630元,求m的值.
(2)該超市準備花費不超過1600元的資金,購進A、B兩種水杯共120個,其中B種水杯的數(shù)量不多于A種水杯數(shù)量的兩倍.請為該超市設計獲利最大的進貨方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形 ABCD 中,M,N,P,Q 分別為邊 AB,BC,CD,DA 上的點(不與端點重合).對于任意矩形 ABCD,下面四個結(jié)論中:①存在無數(shù)個四邊形 MNPQ 是平行四邊形;②存在無數(shù)個四邊形 MNPQ 是矩形;③存在無數(shù)個四邊形 MNPQ 是菱形;④不存在四邊形 MNPQ 是正方形.所有正確結(jié)論的序號是_________________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形中,,,以點為坐標原點,所在的直線為軸,建立直角坐標系.
(Ⅰ)將矩形繞點逆時針旋轉(zhuǎn)至矩形,如圖1,經(jīng)過點,求旋轉(zhuǎn)角的大小和點,的坐標;
(Ⅱ)將圖1中矩形沿直線向左平移,如圖2,平移速度是每秒1個單位長度.
①經(jīng)過幾秒,直線經(jīng)過點;
②設兩矩形重疊部分的面積為,運動時間為,寫出重疊部分面積與時間之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖像分別交x、y軸于點A、B,拋物線經(jīng)過點A、B,點P為第四象限內(nèi)拋物線上的一個動點.
(1)求此拋物線對應的函數(shù)表達式;
(2)如圖1所示,過點P作PM∥y軸,分別交直線AB、x軸于點C、D,若以點P、B、C為頂點的三角形與以點A、C、D為頂點的三角形相似,求點P的坐標;
(3)如圖2所示,過點P作PQ⊥AB于點Q,連接PB,當△PBQ中有某個角的度數(shù)等于∠OAB度數(shù)的2倍時,請直接寫出點P的橫坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com