【題目】如圖,已知:射線PO與⊙O交于A、B兩點(diǎn),PC、PD分別切⊙O于點(diǎn)C、D.
(1)請(qǐng)寫出兩個(gè)不同類型的正確結(jié)論;
(2)若CD=12,tan∠CPO= ,求PO的長.
【答案】
(1)解:不同類型的正確結(jié)論有:
①PC=PD,②∠CPO=∠DP,③CD⊥BA,④∠CEP=90°,⑤PC2=PAPB
(2)解:連接OC
∵PC、PD分別切⊙O于點(diǎn)C、D
∴PC=PD,∠CPO=∠DPA
∴CD⊥AB
∵CD=12
∴DE=CE= CD=6.
∵tan∠CPO= ,
∴在Rt△EPC中,PE=12
∴由勾股定理得CP=6
∵PC切⊙O于點(diǎn)C
∴∠OCP=90°
在Rt△OPC中,
∵tan∠CPO= ,
∴
∴OC=3 ,
∴OP= =15
【解析】(1)根據(jù)切線長定理可得出PC=PD,∠CPO=∠DP,根據(jù)等腰三角形三線合一的性質(zhì)可得出CD⊥BA,∠CEP=90°,利用相似三角形的判定及性質(zhì)可證得PC2=PAPB,即可得出答案。
(2)根據(jù)切線成定理可證出PC=PD,∠CPO=∠DPA,再根據(jù)等腰三角形的性質(zhì)證得CD⊥AB,再根據(jù)垂徑定理求出CE的長,在Rt△PCE中根據(jù)tan∠CPO= ,就可求出PE的長,利用勾股定理求出PC的長, 在Rt△PCO中根據(jù)tan∠CPO= ,求出OC的長,然后利用勾股定理就可求出PO的長。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,為的高,是的角平分線,若,
(1)求的度數(shù);
(2)若點(diǎn)F為線段上任一點(diǎn),當(dāng)為直角三角形時(shí),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,
請(qǐng)寫出各點(diǎn)的坐標(biāo).
若把向上平移2個(gè)單位,再向左平移1個(gè)單位得到,寫出、、的坐標(biāo),并在圖中畫出平移后圖形.
求出三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長為4cm,以正方形的一邊BC為直徑在正方形ABCD內(nèi)作半圓,過A作半圓的切線,與半圓相切于F點(diǎn),與DC相交于E點(diǎn),則△ADE的面積( 。
A.12
B.24
C.8
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(t+1,t+2),點(diǎn)B(t+3,t+1),將點(diǎn)A向右平移3個(gè)長度單位,再向下平移4個(gè)長度單位得到點(diǎn)C.
(1)用t表示點(diǎn)C的坐標(biāo)為_______;用t表示點(diǎn)B到y軸的距離為___________;
(2)若t=1時(shí),平移線段AB,使點(diǎn)A、B到坐標(biāo)軸上的點(diǎn)、處,指出平移的方向和距離,并求出點(diǎn)、的坐標(biāo);
(3)若t=0時(shí),平移線段AB至MN(點(diǎn)A與點(diǎn)M對(duì)應(yīng)),使點(diǎn)M落在x軸的負(fù)半軸上,三角形MNB的面積為4,試求點(diǎn)M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)學(xué)實(shí)踐活動(dòng)小組要測量學(xué)校附近樓房CD的高度,在水平地面A處安置測傾器測得樓房CD頂部點(diǎn)D的仰角為45°,向前走20米到達(dá)A′處,測得點(diǎn)D的仰角為67.5°,已知測傾器AB的高度為1.6米,則樓房CD的高度約為(結(jié)果精確到0.1米, ≈1.414)( )
A.34.14米
B.34.1米
C.35.7米
D.35.74米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的沿湖道路l上有A、B兩個(gè)游船碼頭,觀光島嶼C在碼頭 A北偏東60°的方向,在碼頭 B北偏西45°的方向,AC=4km.游客小張準(zhǔn)備從觀光島嶼C乘船沿CA回到碼頭A或沿CB回到碼頭B,設(shè)開往碼頭A、B的游船速度分別為v1、v2 , 若回到 A、B所用時(shí)間相等,則 =(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一條拋物線,三位學(xué)生分別說出了它的一些性質(zhì):
甲說:對(duì)稱軸是直線x=2;
乙說:與x軸的兩個(gè)交點(diǎn)距離為6;
丙說:頂點(diǎn)與x軸的交點(diǎn)圍成的三角形面積等于9,請(qǐng)你寫出滿足
上述全部條件的一條拋物線的解析式: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線a∥b,直線c與直線a、b分別相交于C、D兩點(diǎn),直線d與直線a、b分別相交于A、B兩點(diǎn),點(diǎn)P在直線AB上運(yùn)動(dòng)(不與A、B兩點(diǎn)重合).
(1)如圖1,當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),總有:∠CPD=∠PCA+∠PDB,請(qǐng)說明理由;
(2)如圖2,當(dāng)點(diǎn)P在線段AB的延長線上運(yùn)動(dòng)時(shí),∠CPD、∠PCA、∠PDB之間有怎樣的數(shù)量關(guān)系,并說明理由;
(3)如圖3,當(dāng)點(diǎn)P在線段BA的延長線上運(yùn)動(dòng)時(shí),∠CPD、∠PCA、∠PDB之間又有怎樣的數(shù)量關(guān)系(只需直接給出結(jié)論)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com