【題目】如圖,將三角形紙片ABC沿AD折疊,使點C落在BD邊上的點E處.若BC=8,BE=2.則AB2AC2的值為( 。

A. 4 B. 6 C. 10 D. 16

【答案】D

【解析】

根據(jù)折疊的性質(zhì)得到AE=AC,DE=CD,ADBC,由勾股定理得到AB2=AD2+BD2,AC2=AD2+CD2,兩式相減,通過整式的化簡即可得到結(jié)論.

∵將三角形紙片ABC沿AD折疊,使點C落在BD邊上的點E處,

AE=AC,DE=CD,ADBC,

AB2=AD2+BD2,AC2=AD2+CD2,

AB2﹣AC2=AD2+BD2﹣AD2﹣CD2=BD2﹣CD2=(BD+CD)(BD﹣CD)=BCBE,

BC=8,BE=2,

AB2﹣AC2=8×2=16.

故選:D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD120°∠B∠D90°,在BC、CD上分別找一點MN,使△AMN周長最小時,則∠AMN∠ANM的度數(shù)為( )

A. 130°B. 120°C. 110°D. 100°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC中,點DBC的中點,BD=ABADBC

1)如圖1,求∠BAD的度數(shù);

2)如圖2,點EBC上一點,點FAC上一點,連接AE、BF交于點G,若∠AGF=60°,求證:BE=CF

3)如圖3,在(2)的條件下,點GBF的中點,點HAG上一點,延長BHAC于點KAK=HK,BMAEAE延長線于點M,BG=9,HM=10,求線段AG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點BF為圓心,大于長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF

1)四邊形ABEF_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)

2AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為________,∠ABC=________°.(直接填寫結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】背景閱讀 早在三千多年前,我國周朝數(shù)學家商高就提出:將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五.它被記載于我國古代著名數(shù)學著作《周髀算經(jīng)》中,在本題中,我們把三邊的比為3∶4∶5的三角形稱為(3,4,5)型三角形,例如:三邊長分別為9,12,15的三角形就是(3,4,5)型三角形,用矩形紙片按下面的操作方法可以折出這種類型的三角形.

實踐操作 如圖①,在矩形紙片ABCD中,AD=8 cm,AB=12 cm.

第一步:如圖②,將圖①中的矩形紙片ABCD沿過點A的直線折疊,使點D落在AB上的點E處,折痕為AF,再沿EF折疊,然后把紙片展平.

第二步:如圖③,將圖②中的矩形紙片再次折疊,使點D與點F重合,折痕為GH,然后展平,隱去AF.

第三步:如圖④,將圖③中的矩形紙片沿AH折疊,得到△AD′H,再沿AD′折疊,折痕為AM,AM與折痕EF交于點N,然后展平.

問題解決

(1)請在圖②中證明四邊形AEFD是正方形;

(2)請在圖④中判斷NF與ND′的數(shù)量關系,并加以證明;

(3)請在圖④中證明△AEN是(3,4,5)型三角形.

    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了加強學生的交通安全意識,某中學和交警大隊聯(lián)合舉行了我當一日小交警活動,星期天選派部分學生到交通路口值勤,協(xié)助交通警察維護交通秩序.若每一個路口安排4人,那么還剩下78人;若每個路口安排8人,那么最后一個路口不足8人,但不少于4人.求這個中學共選派值勤學生多少人?共有多少個交通路口安排值勤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知AD平分∠BAC,B+C=180°

(1)如圖①,當∠B=90°時,求證:DB=DC;

(2)如圖②,如果∠ABD<90°,(1)中的結(jié)論還成立嗎?如果成立,請給出證明,如果不成立,請舉反例說明;

(3)如圖③,四邊形ABDC,B=45°,C=135°,DB=DC=1,則ABAC=___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017湖北省恩施州)如圖,在RtABC中,∠BAC=30°,以直角邊AB為直徑作半圓交AC于點D,以AD為邊作等邊ADE,延長EDBC于點FBC=,則圖中陰影部分的面積為______.(結(jié)果不取近似值)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a,b,c△ABC的三條邊,關于x的方程x2+x+c-a=0有兩個相等的實數(shù)根,方程3cx+2b=2a的根為x=0.

(1)試判斷△ABC的形狀;

(2)若a,b為方程x2+mx-3m=0的兩個根,求m的值.

查看答案和解析>>

同步練習冊答案