【題目】如圖,將三角形紙片ABC沿AD折疊,使點C落在BD邊上的點E處.若BC=8,BE=2.則AB2﹣AC2的值為( 。
A. 4 B. 6 C. 10 D. 16
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小時,則∠AMN+∠ANM的度數(shù)為( )
A. 130°B. 120°C. 110°D. 100°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,點D為BC的中點,BD=AB,AD⊥BC.
(1)如圖1,求∠BAD的度數(shù);
(2)如圖2,點E為BC上一點,點F為AC上一點,連接AE、BF交于點G,若∠AGF=60°,求證:BE=CF;
(3)如圖3,在(2)的條件下,點G為BF的中點,點H為AG上一點,延長BH交AC于點K,AK=HK,BM⊥AE交AE延長線于點M,BG=9,HM=10,求線段AG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF.
(1)四邊形ABEF是_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)
(2)AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為________,∠ABC=________°.(直接填寫結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】背景閱讀 早在三千多年前,我國周朝數(shù)學家商高就提出:將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五.它被記載于我國古代著名數(shù)學著作《周髀算經(jīng)》中,在本題中,我們把三邊的比為3∶4∶5的三角形稱為(3,4,5)型三角形,例如:三邊長分別為9,12,15的三角形就是(3,4,5)型三角形,用矩形紙片按下面的操作方法可以折出這種類型的三角形.
實踐操作 如圖①,在矩形紙片ABCD中,AD=8 cm,AB=12 cm.
第一步:如圖②,將圖①中的矩形紙片ABCD沿過點A的直線折疊,使點D落在AB上的點E處,折痕為AF,再沿EF折疊,然后把紙片展平.
第二步:如圖③,將圖②中的矩形紙片再次折疊,使點D與點F重合,折痕為GH,然后展平,隱去AF.
第三步:如圖④,將圖③中的矩形紙片沿AH折疊,得到△AD′H,再沿AD′折疊,折痕為AM,AM與折痕EF交于點N,然后展平.
問題解決
(1)請在圖②中證明四邊形AEFD是正方形;
(2)請在圖④中判斷NF與ND′的數(shù)量關系,并加以證明;
(3)請在圖④中證明△AEN是(3,4,5)型三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了加強學生的交通安全意識,某中學和交警大隊聯(lián)合舉行了“我當一日小交警”活動,星期天選派部分學生到交通路口值勤,協(xié)助交通警察維護交通秩序.若每一個路口安排4人,那么還剩下78人;若每個路口安排8人,那么最后一個路口不足8人,但不少于4人.求這個中學共選派值勤學生多少人?共有多少個交通路口安排值勤?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知AD平分∠BAC,∠B+∠C=180°
(1)如圖①,當∠B=90°時,求證:DB=DC;
(2)如圖②,如果∠ABD<90°時,(1)中的結(jié)論還成立嗎?如果成立,請給出證明,如果不成立,請舉反例說明;
(3)如圖③,四邊形ABDC中,∠B=45°,∠C=135°,DB=DC=1,則ABAC=___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017湖北省恩施州)如圖,在Rt△ABC中,∠BAC=30°,以直角邊AB為直徑作半圓交AC于點D,以AD為邊作等邊△ADE,延長ED交BC于點F,BC=,則圖中陰影部分的面積為______.(結(jié)果不取近似值)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設a,b,c是△ABC的三條邊,關于x的方程x2+x+c-a=0有兩個相等的實數(shù)根,方程3cx+2b=2a的根為x=0.
(1)試判斷△ABC的形狀;
(2)若a,b為方程x2+mx-3m=0的兩個根,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com