如圖,在四邊形ABCD中,AB=,BC=1,CD=3,∠B=135°,∠C=90°,則∠D等于( )

A.60°
B.67.5°
C.75°
D.無法確定
【答案】分析:通過對內分割或向外補形,構造直角三角形,解出AF、BF的長,得出AE、DE,解直角三角形ADE求出角D的度數(shù).
解答:解:如圖所示
過A作AE⊥CD于E,B作BF⊥AE于F.
∵∠B=135,∠C=90
∴∠BAF=45°.
∴AF=BF==
∴AE=AF+BC=2,DE=3-BF=4-2
得tan∠D==
故∠D=67.5°.
故選B.
點評:考查了解直角三角形的應用.
注:因直角三角形元素之間有很多關系,故用已知元素與未知元素的途徑常不惟一,選擇怎樣的途徑最有效、最合理呢?請記。河行庇孟遥瑹o斜用切,寧乘勿除.在沒有直角的條件下,常通過作垂線構造直角三角形;在解由多個直角三角形組合而成的問題時,往往先解已具備條件的直角三角形,使得求解的直角三角形最終可解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結AD、AE、CD,則下列結論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案