【題目】如圖,在△ABC中,AB=AC,tanACB=2,D在△ABC內(nèi)部,且AD=CD,ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____

【答案】5

【解析】

作輔助線,構建全等三角形和高線DH,設CM=a,根據(jù)等腰直角三角形的性質和三角函數(shù)表示ACAM的長,根據(jù)三角形面積表示DH的長,證明ADG≌△CDH(AAS),可得DG=DH=MG=作輔助線,構建全等三角形和高線DH,設CM=a,根據(jù)等腰直角三角形的性質和三角函數(shù)表示ACAM的長,根據(jù)三角形面積表示DH的長,證明ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結論.,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結論.

DDHBCH,過AAMBCM,過DDGAMG,

CM=a,

AB=AC,

BC=2CM=2a,

tanACB=2,

=2,

AM=2a,

由勾股定理得:AC=a,

SBDCBCDH=10,

2aDH=10,

DH=,

∵∠DHM=HMG=MGD=90°,

∴四邊形DHMG為矩形,

∴∠HDG=90°=HDC+CDG,DG=HM,DH=MG,

∵∠ADC=90°=ADG+CDG,

∴∠ADG=CDH,

ADGCDH中,

,

∴△ADG≌△CDH(AAS),

DG=DH=MG=,AG=CH=a+

AM=AG+MG,

2a=a+,

a2=20,

RtADC中,AD2+CD2=AC2

AD=CD,

2AD2=5a2=100,

AD=55(舍),

故答案為:5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別是邊AD,BC的中點,連接DF,過點EEHDF,垂足為H,EH的延長線交DC于點G.

(1)猜想DGCF的數(shù)量關系,并證明你的結論;

(2)過點HMNCD,分別交AD,BC于點M,N,若正方形ABCD的邊長為10,點PMN上一點,求△PDC周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ADBCD,下列條件①∠B+DAC=90°;②∠B=DAC;=AB2=BDBC . 其中一定能夠判定ABC是直角三角形的有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新能源汽車環(huán)保節(jié)能,越來越受到消費者的喜愛.各種品牌相繼投放市場.一汽貿(mào)公司經(jīng)銷某品牌新能源汽車.去年銷售總額為5000萬元,今年1~5月份,每輛車的銷售價格比去年降低1萬元.銷售數(shù)量與去年一整年的相同.銷售總額比去年一整年的少20%,今年1~5月份每輛車的銷售價格是多少萬元?設今年1~5月份每輛車的銷售價格為x萬元.根據(jù)題意,列方程正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校利用暑假進行田徑場的改造維修,項目承包單位派遣一號施工隊進場施工,計劃用40天時間完成整個工程:當一號施工隊工作5天后,承包單位接到通知,有一大型活動要在該田徑場舉行,要求比原計劃提前14天完成整個工程,于是承包單位派遣二號與一號施工隊共同完成剩余工程,結果按通知要求如期完成整個工程.

(1)若二號施工隊單獨施工,完成整個工程需要多少天?

(2)若此項工程一號、二號施工隊同時進場施工,完成整個工程需要多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,∠B= 60°,點DAB邊上的動點,過點DDEBCAC于點E,將△ABE沿DE折疊,點A對應點為F.

(1)如圖1,當點F恰好落在BC邊上,求證:△BDF是等邊三角形;

(2)如圖2,當點F恰好落在△ABC內(nèi),且DF的延長線恰好經(jīng)過點CCF=EF,求∠A的大。

(3)如圖3,當點F恰好落在△ABC外,DFBC于點G,連接BF,若BFAB,AB=9,求BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于兩點,則下列一次函數(shù)中,能使線段最長的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖,給出下列四個結論:;②;③;④,其中正確結論的個數(shù)是(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將橫截面為等腰三角形ABC的物體按如圖29-Z-25所示放在水平地面上,AB=AC=2,BAC=120°,AB緊貼地面有一光源S,在其照射下該物體的影子AD=6,ABC繞點A旋轉60°C落在地面上的點C′,B轉至點B′此時B′的影子恰好落在C′

(1)試在圖中畫出光源S所在的位置;

(2)求出光源S到地面的距離

查看答案和解析>>

同步練習冊答案