【題目】已知△ABC中,∠B= 60°,點(diǎn)D是AB邊上的動(dòng)點(diǎn),過(guò)點(diǎn)D作DE∥BC交AC于點(diǎn)E,將△ABE沿DE折疊,點(diǎn)A對(duì)應(yīng)點(diǎn)為F點(diǎn).
(1)如圖1,當(dāng)點(diǎn)F恰好落在BC邊上,求證:△BDF是等邊三角形;
(2)如圖2,當(dāng)點(diǎn)F恰好落在△ABC內(nèi),且DF的延長(zhǎng)線恰好經(jīng)過(guò)點(diǎn)C,CF=EF,求∠A的大小;
(3)如圖3,當(dāng)點(diǎn)F恰好落在△ABC外,DF交BC于點(diǎn)G,連接BF,若BF⊥AB,AB=9,求BG的長(zhǎng).
【答案】(1)見(jiàn)解析(2)40°(3)3
【解析】
(1)根據(jù)DE∥BC,∠B=60°得到∠ADE=∠B=60°,根據(jù)折疊的性質(zhì)得到∠FDE=∠ADE=60°,從而得到△BDF 是等邊三角形
(2)根據(jù)CF=EF ,設(shè)∠FCE=∠FEC=x,則∠DFE=∠FCE+∠FEC=2x,根據(jù)折疊得到∠A=∠DFE=2x ,再由(1)同理可得到△BDC 是等邊三角形,再利用△ABC內(nèi)角和即可列出方程求解
(3)同(1)可得△BDG 是等邊三角形,根據(jù)BF⊥AB 得到∠BFD=30°,得BD=DF,再根據(jù)折疊的性質(zhì)得到DF=AD,故BD=AD=AB=×9=3,即可求出BG的長(zhǎng).
(1)證明:∵DE∥BC,∠B=60°
∴∠ADE=∠B=60°
∵△ADE 沿 DE 折疊得到△DEF
∴∠FDE=∠ADE=60°
∴∠BDF=180°-60°-60°=60°
在△BDF 中,∠B=∠BDF=60°
∴△BDF 是等邊三角形.
(2)解:∵CF=EF
∴設(shè)∠FCE=∠FEC=x,則∠DFE=∠FCE+∠FEC=2x
∵△ADE 沿 DE 折疊得到△DEF
∴∠A=∠DFE=2x
同(1)可得△BDC 是等邊三角形
∴∠BCD=60°
在△ABC 中,∠A+∠B+∠BCA=180° ∴2x+60°+(60°+x)=180° 解得:x=20°
∴∠A=2x=40°.
(3)解:同(1)可得△BDG 是等邊三角形
∴∠BDG=60°,BG=BD
∵BF⊥AB
∴∠DBF=90°
∴∠BFD=90°-60°=30°
∴BD=DF
又∵△ADE 沿 DE 折疊得到△DEF
∴DF=AD
∴BD=AD=AB=×9=3
∴BG=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)F是ABCD的邊AD上的三等分點(diǎn),BF交AC于點(diǎn)E,如果△AEF的面積為2,那么四邊形CDFE的面積等于( )
A. 18 B. 22 C. 24 D. 46
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E為BC中點(diǎn)連接AE,DF⊥AE于點(diǎn)F,連接CF,F(xiàn)G⊥CF交AD于點(diǎn)G,下列結(jié)論:①CF=CD;②G為AD中點(diǎn);③△DCF∽△AGF;④,其中結(jié)論正確的個(gè)數(shù)有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠CAB=90°,在斜邊CB上取點(diǎn)M,N(不包含C、B兩點(diǎn)),且tanB=tanC=tan∠MAN=1,設(shè)MN=x,BM=n,CN=m,則以下結(jié)論能成立的是( 。
A. m=n B. x=m+n C. x>m+n D. x2=m2+n2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內(nèi)部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一貨輪在C處測(cè)得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時(shí)的速度按北偏東30°的方向航行,半小時(shí)后到達(dá)B處,此時(shí)又測(cè)得燈塔A在貨輪的北偏西75°的方向上(如圖),求此時(shí)貨輪距燈塔A的距離AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E在BC邊上,點(diǎn)F在AC邊上,將△ABD沿著AD翻折,使點(diǎn)B和點(diǎn)E重合,將△CEF沿著EF翻折,點(diǎn)C恰與點(diǎn)A重合.結(jié)論:①∠BAC=90°,②DE=EF,③∠B=2∠C,④AB=EC,正確的有( )
A.①②③④B.③④C.①②④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一幅三角板拼成如圖所示的圖形,過(guò)點(diǎn)C作CF平分∠DCE交DE于點(diǎn)F.
(1)求證:CF∥AB.
(2)求∠DFC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com