【題目】如圖,邊長為正整數(shù)的正方形ABCD被分成了四個小長方形且點EF,G,H在同一直線上(點F在線段EG上),點E,N,HM在正方形ABCD的邊上,長方形AEFMGNCH的周長分別為610.則正方形ABCD的邊長的最小值為( 。

A.3B.4C.5D.不能確定

【答案】B

【解析】

設(shè)AEx,ABy,則由長方形AEFM,GNCH的周長分別為610可表示出EFHG的長,由EF+HGBC即可得到正方形ABCD的邊長的最小值.

解:設(shè)AEx,ABy

則由長方形AEFM,GNCH的周長分別為610可知:

EF3xBEyx,HGxy+5

EF+HGBC,

3x+xy+5≤y,

y≥4,

∴正方形ABCD的邊長的最小值為4

故選B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了計算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學興趣小組在公路l上的點A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達公路l上的點B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖1,在中,,點上,,點的中點.

1)寫出線段與線段的關(guān)系并證明;

2)如圖2,將繞點逆時針旋轉(zhuǎn),其它條件不變,線段與線段的關(guān)系是否變化,寫出你的結(jié)論并證明;

3)將繞點逆時針旋轉(zhuǎn)一周,如果,,直接寫出線段的范圍.

    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠ACB=90°,點P以每秒1cm的速度從點A出發(fā),沿折線ACCB運動,到點B停止.過點PPD⊥AB,垂足為D,PD的長ycm)與點P的運動時間x(秒)的函數(shù)圖象如圖2所示.當點P運動5秒時,PD的長是( )

A.1.5cmB.1.2cmC.1.8cmD.2cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了將貨物裝入大型的集裝箱卡車,需要利用傳送帶AB將貨物從地面?zhèn)魉偷礁?/span>1.8米(即BD=1.8米)的操作平臺BC上.已知傳送帶AB與地面所成斜坡的坡角∠BAD=37°

1)求傳送帶AB的長度;

2)因?qū)嶋H需要,現(xiàn)在操作平臺和傳送帶進行改造,如圖中虛線所示,操作平臺加高0.2米(即BF=0.2米),傳送帶與地面所成斜坡的坡度i=12.求改造后傳送帶EF的長度.(精確到0.1米)(參考數(shù)值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.41, ≈2.24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如圖(1),,,四點分別在四邊形的四條邊上,若四邊形為菱形,我們稱菱形為四邊形的內(nèi)接菱形.

動手操作:

1)如圖2,網(wǎng)格中的每個小四邊形都為正方形,每個小四邊形的頂點叫做格點,由個小正方形組成一個大正方形,點、在格點上,請在圖(2)中畫出四邊形的內(nèi)接菱形

特例探索:

2)如圖3,矩形,點在線段上且,四邊形是矩形的內(nèi)接菱形,求的長度;

拓展應用:

3)如圖4,平行四邊形,,點在線段上且

請你在圖4中畫出平行四邊形的內(nèi)接菱形,點在邊上;

的條件下,當的長最短時,的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AC平分∠DAB,直線DCAB的延長線相交于點P,ADPC延長線垂直,垂足為D,CE平分∠ACB,交⊙OE

1)求證:PC與⊙O相切;

2)若AC=6,tanBEC=,求BE的長度以及圖中陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的⊙OBC于點D,交AC于點G,過DEFAC于點E,交AB的延長線于點F

1)求證:EF是⊙O的切線;

2)當∠BAC60°,AB8時,求EG的長;

3)當AB5BC6時,求tanF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東66.1°方向,距離燈塔120海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處,求BPBA的長(結(jié)果取整數(shù)).

參考數(shù)據(jù):sin66.1°≈0.91,cos66.1°≈0.41,tan64°≈2.26,1.414.

查看答案和解析>>

同步練習冊答案