【題目】如圖,在RtABC中,∠C90°,AC4BC3.在RtABC的外部拼接一個(gè)合適的直角三角形,使得拼成的圖形是一個(gè)等腰三角形,如圖所示.要求:在答題卡的兩個(gè)備用圖中分別畫出兩種與示例不同的拼接方法,并在圖中標(biāo)明拼接的直角三角形的三邊長(zhǎng).(請(qǐng)同學(xué)們先用鉛筆畫出草圖,確定后再用0.5毫米的黑色簽字筆畫出正確的圖形)

【答案】見解析

【解析】

由勾股定理易得AB5,設(shè)等腰三角形另一頂點(diǎn)為D.由于腰不固定,所以應(yīng)分情況討論.ABAD,ABBDADBD.可以利用勾股定理求得其他邊的長(zhǎng)度.

AC=4,BC=3,

如下圖:

AB=AD時(shí),

AB=BD時(shí),

AD=BD時(shí),

以上四個(gè)圖中任意畫其中兩個(gè),并標(biāo)出三角形的三邊長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校20周年校慶時(shí),需要在草場(chǎng)上利用氣球懸掛宣傳條幅,EF為旗桿,氣球從A處起飛,幾分鐘后便飛達(dá)C處,此時(shí),在AF延長(zhǎng)線上的點(diǎn)B處測(cè)得氣球和旗桿EF的頂點(diǎn)E在同一直線上.

(1)已知旗桿高為12米,若在點(diǎn)B處測(cè)得旗桿頂點(diǎn)E的仰角為30°,A處測(cè)得點(diǎn)E的仰角為45°,試求AB的長(zhǎng)(結(jié)果保留根號(hào));

(2)在(1)的條件下,若BCA=45°,繩子在空中視為一條線段,試求繩子AC的長(zhǎng)(結(jié)果保留根號(hào))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰RtABCACB=90°)的直角邊與正方形DEFG的邊長(zhǎng)均為2,且ACDE在同一直線上,開始時(shí)點(diǎn)C與點(diǎn)D重合,讓ABC沿這條直線向右平移,直到點(diǎn)A與點(diǎn)E重合為止.設(shè)CD的長(zhǎng)為xABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則yx之間的函數(shù)關(guān)系的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“端午節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對(duì)去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).

請(qǐng)根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅不完整的圖補(bǔ)充完整;

(3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛吃D粽的人數(shù);

(4)若有外型完全相同的A、B、C、D粽各一個(gè),煮熟后,小王吃了兩個(gè).用列表或畫樹狀圖的方法,求他第二個(gè)吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題,從下列四個(gè)條件:①AB=BC,②∠ABC=90°,③AC=BD④AC⊥BD中選兩個(gè)作為補(bǔ)充條件,使ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認(rèn)為其中錯(cuò)誤的是( )

A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線:y=﹣xx﹣2)(0≤x≤2)記為C1,它與x軸交于兩點(diǎn)OA1;將C1A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進(jìn)行下去,直至得到C2018,若點(diǎn)P(4035,m)在第2018段拋物線C2018上,則m的值是

A. 1 B. -1 C. 0 D. 4035

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與直線y=x+3分別交于x軸和y軸上同一點(diǎn),交點(diǎn)分別是點(diǎn)A和點(diǎn)C,且拋物線的對(duì)稱軸為x=﹣2.

(1)求出拋物線與x軸的兩個(gè)交點(diǎn)A、B的坐標(biāo).

(2)求出該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)于任意三點(diǎn)A,B,C,給出如下定義:

若矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點(diǎn)都在矩形的內(nèi)部或邊界上,則稱該矩形為點(diǎn)A,BC的外延矩形.點(diǎn)A,B,C的所有外延矩形中,面積最小的矩形稱為點(diǎn)A,B,C的最佳外延矩形.例如,圖中的矩形,都是點(diǎn)A,BC的外延矩形,矩形是點(diǎn)A,B,C的最佳外延矩形.

1)如圖1,已知A(-20),B4,3),C0,).

,則點(diǎn)A,B,C的最佳外延矩形的面積為 ;

若點(diǎn)A,B,C的最佳外延矩形的面積為24,則的值為 ;

2)如圖2,已知點(diǎn)M6,0),N0,8).P)是拋物線上一點(diǎn),求點(diǎn)MN,P的最佳外延矩形面積的最小值,以及此時(shí)點(diǎn)P的橫坐標(biāo)的取值范圍;

3)如圖3,已知點(diǎn)D1,1).E,)是函數(shù)的圖象上一點(diǎn),矩形OFEG是點(diǎn)O,D,E的一個(gè)面積最小的最佳外延矩形,⊙H是矩形OFEG的外接圓,請(qǐng)直接寫出⊙H的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀:對(duì)于所有的一元二次方程ax2+bx+c0a≠0)中,對(duì)于兩根x1x2,存在如下關(guān)系:x1+x2,x1x2.試著利用這個(gè)關(guān)系解決問題.設(shè)方程2x25x30的兩根為x1,x2,不解方程,求下列式子的值:2x12+4x22+5x1

查看答案和解析>>

同步練習(xí)冊(cè)答案