【題目】如圖,已知拋物線的頂點在第四象限,頂點到x軸的距離為3,拋物線與x軸交于原點O(0,0)及點A,且OA=4.
(1)求該拋物線的解析式;
(2)若線段OA繞點O順時針旋轉45°到OA′,試判斷點A′是否在該拋物線上,并說明理由.
【答案】
(1)解:根據(jù)題意可知:拋物線的頂點坐標為(2,﹣3),
設拋物線的解析式為y=a(x﹣2)2﹣3,
由于拋物線經過原點,
即4a﹣3=0,
解得a= .
故拋物線的解析式為y= (x﹣2)2﹣3
(2)解:設點A′坐標為(x,y),
則直線OA′的解析式為y=﹣x①,
根據(jù)旋轉的性質可知:OA′=OA=4,
即x2+y2=16②,
由①②可得x=2 ,y=﹣2 ,
即點A′坐標為(2 ,﹣2 ),
把點A′坐標為(2 ,﹣2 )代入解析式y(tǒng)= (x﹣2)2﹣3;
﹣2 ≠ (2 ﹣2)2﹣3,
即點A′不在該拋物線上
【解析】(1)首先求出拋物線的頂點坐標,設拋物線的解析式為y=a(x﹣2)2+3,由于拋物線經過原點,進而求出a的值即可;(2)設點A′坐標為(x,y),先求出直線OA′的解析式,根據(jù)OA′=OA=4,求出點A′的坐標,進而判斷點A′是否在該拋物線上.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在¨ABCD中,過點D作DE⊥AB與點E,點F在邊CD上,DF=BE,連接AF,BF
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于_______.
【答案】10或6
【解析】試題解析:根據(jù)題意畫出圖形,如圖所示,
如圖1所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據(jù)勾股定理得:BD==8,CD==2,
此時BC=BD+CD=8+2=10;
如圖2所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據(jù)勾股定理得:BD==8,CD==2,
此時BC=BD-CD=8-2=6,
則BC的長為6或10.
【題型】填空題
【結束】
12
【題目】在平面直角坐標系中,已知一次函數(shù)y=2x+1的圖象經過P1(x1,y1)、P2(x2,y2)兩點,若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.
(1)求每套隊服和每個足球的價格是多少?
(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;
(3)假如你是本次購買任務的負責人,你認為到哪家商場購買比較合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,CA平分∠DCB,∠ADC=∠BAC=90°.
(1)求證:AC2=BCDC;
(2)若BC=5,DC=1,求線段AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩個村莊的坐標分別為(2,2)、(7,4),一輛汽車從原點O出發(fā),在x軸上行駛.
(1)汽車行駛到什么位置時離村莊A最近?寫出此位置的坐標.
(2)汽車行駛到什么位置時離村莊B最近?寫出此位置的坐標.
(3)請在圖中畫出汽車到兩村莊的距離和最短的位置,并求出此最短的距離和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是給定△ABC邊AB上一動點,D是CP的延長線上一點,且2DP=PC,連結DB,動點P從點B出發(fā),沿BA方向勻速運動到終點A,則△APC與△DBP面積的差的變化情況是( )
A.始終不變
B.先減小后增大
C.一直變大
D.一直變小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為( )
A. B. 3 C. 1 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為1cm的等邊三角形ABC沿直線l向右翻動(不滑動),點B從開始到結束,所經過路徑的長度為( )
A. cm
B.(2+ π)cm
C. cm
D.3cm
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com