【題目】(動(dòng)手操作)
如圖①,把長(zhǎng)為l、寬為h的矩形卷成以AB為高的圓柱形,則點(diǎn)A′與點(diǎn)______重合,點(diǎn)B′與點(diǎn)______重合;
(探究發(fā)現(xiàn))
如圖②,圓柱的底面周長(zhǎng)是80,高是60,若在圓柱體的側(cè)面繞一圈絲線作裝飾,從下底面A出發(fā),沿圓柱側(cè)面繞一周到上底面B,則這條絲線最短的長(zhǎng)度是______;
(實(shí)踐應(yīng)用)
如圖③,圓錐的母線長(zhǎng)為12,底面半徑為4,若在圓錐體的側(cè)面繞一圈彩帶做裝飾,從圓錐的底面上的點(diǎn)A出發(fā),沿圓錐側(cè)面繞一周回到點(diǎn)A.求這條彩帶最短的長(zhǎng)度是多少?
(拓展聯(lián)想)
如圖④,一顆古樹上下粗細(xì)相差不大,可以看成圓柱體.測(cè)得樹干的周長(zhǎng)為3米,高為18米,有一根紫藤自樹底部均勻的盤繞在樹干上,恰好繞8周到達(dá)樹干的頂部,這條紫藤至少有 米
【答案】【動(dòng)手操作】:A,B;【探究發(fā)現(xiàn)】100 ;【實(shí)踐應(yīng)用】:;【拓展聯(lián)想】30
【解析】
[動(dòng)手操作]根據(jù)圓柱的側(cè)面展開圖是矩形即可得到答案;
[探究發(fā)現(xiàn)] 連接,根據(jù)矩形的性質(zhì)及勾股定理求出即可得到答案;
[實(shí)踐應(yīng)用]將圓錐展開得到展開圖,連接,根據(jù)弧長(zhǎng)公式求出∠的度數(shù),過(guò)點(diǎn)O作OD⊥于點(diǎn)D,根據(jù)等腰三角形的性質(zhì)及直角三角形的性質(zhì)求出OD=6,再利用勾股定理求出AD即可得到答案;
[拓展聯(lián)想]將樹干的高度分成相等的8段,利用樹干的周長(zhǎng)建立勾股定理的等式求出一圈紫藤的長(zhǎng),由此得到答案.
[動(dòng)手操作]點(diǎn)與點(diǎn)A重合,點(diǎn)與點(diǎn)B重合,
故答案為:A,B;
[探究發(fā)現(xiàn)]由題意知該圓柱的側(cè)面展開圖即是矩形,則=80,=60,
連接,
∵∠=90°,
∴,
∴這條絲線最短的長(zhǎng)度是100,
故答案為:100;
[實(shí)踐應(yīng)用]
解:圓錐的側(cè)面展開圖,如圖所示:
連接,
則為最短路徑.
弧的長(zhǎng)為:,
由弧長(zhǎng)公式得∠的度數(shù)為:
過(guò)點(diǎn)O作OD⊥于點(diǎn)D,
∴∠AOD=60°,
∴∠OAD=30°,
∴OD=6,
在Rt△AOD中,
∴這條彩帶最短的長(zhǎng)度是;
[拓展聯(lián)想]∵樹干的高是18米,纏繞8圈紫藤,
∴每相鄰兩圈紫藤的距離是米,
∵樹干的周長(zhǎng)是3米,
∴一圈紫藤的長(zhǎng)度是米,
∴8圈紫藤的長(zhǎng)度最少是米,
故答案為:30.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.
(1)求證:四邊形ABEF是平行四邊形;
(2)當(dāng)∠ABC為多少度時(shí),四邊形ABEF為矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在正方形ABCD中,點(diǎn)E是AB的中點(diǎn),點(diǎn)P是對(duì)角線AC上一動(dòng)點(diǎn),設(shè)PC的長(zhǎng)度為x,PE與PB的長(zhǎng)度和為y,圖②是y關(guān)于x的函數(shù)圖象,則圖象上最低點(diǎn)H的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知頂點(diǎn)為的拋物線與軸交于,兩點(diǎn),且.
(1)求點(diǎn)的坐標(biāo);
(2)求二次函數(shù)的解析式;
(3)作直線,問(wèn)拋物線上是否存在點(diǎn),使得.若存在,求出點(diǎn)的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A是以BC為直徑的⊙O上一點(diǎn),I是△ABC的內(nèi)心,AI的延長(zhǎng)線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作BC的平行線交AB、AC的延長(zhǎng)線于E、F.下列說(shuō)法:①△DBC是等腰直角三角形;②EF與⊙O相切;③EF=2BC;④點(diǎn)B、I、C在以點(diǎn)D 為圓心的同一個(gè)圓上.其中一定正確的是_______(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C,D在同一條直線上,點(diǎn)E,F分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE= 時(shí),四邊形BFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項(xiàng)是( 。
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)方法選擇:如圖①,四邊形ABCD是⊙O的內(nèi)接四邊形,連接AC,BD,AB=BC=AC.求證:BD=AD+CD.
小穎認(rèn)為可用截長(zhǎng)法證明:在DB上截取DM=AD,連接AM…
小軍認(rèn)為可用補(bǔ)短法證明:延長(zhǎng)CD至點(diǎn)N,使得DN=AD…
請(qǐng)你選擇一種方法證明.
(2)類比探究:(探究1)如圖②,四邊形ABCD是⊙O的內(nèi)接四邊形,連接AC,BD,BC是⊙O的直徑,AB=AC.試用等式表示線段AD,BD,CD之間的數(shù)量關(guān)系,井證明你的結(jié)論.
(探究2)如圖③,四邊形ABCD是⊙O的內(nèi)接四邊形,連接AC,BD.若BC是⊙O的直徑,∠ABC=30°,則線段AD,BD,CD之間的等量關(guān)系式是 .
(3)拓展猜想:如圖④,四邊形ABCD是⊙O的內(nèi)接四邊形,連接AC,BD.若BC是⊙O的直徑,BC:AC:AB=a:b:c,則線段AD,BD,CD之間的等量關(guān)系式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2m+1)x+m2﹣4=0有兩個(gè)不相等的實(shí)數(shù)根
(1)求實(shí)數(shù)m的取值范圍;
(2)若兩個(gè)實(shí)數(shù)根的平方和等于15,求實(shí)數(shù)m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com