【題目】如圖,正方形ABCD中,點(diǎn)G為對(duì)角線(xiàn)AC上一點(diǎn),AG=AB.∠CAE=15°且AE=AC,連接GE.將線(xiàn)段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到線(xiàn)段AF,使DF=GE,則∠CAF的度數(shù)為________

【答案】30或60

【解析】∵線(xiàn)段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到線(xiàn)段AF,

AE=AF

∵四邊形ABCD是正方形,

AB=AD,

AG=AB,

AD=AG

AGEADF, ,

AGEADF(SSS)

∴∠DAF=CAE=15°,

AC為正方形ABCD的對(duì)角線(xiàn),

∴∠CAD=45°,

點(diǎn)FAD的下方時(shí),CAF=CADDAF=45°15°=30°

點(diǎn)FAD的上方時(shí),CAF=CAD+DAF=45°+15°=60°

綜上所述,CAF的度數(shù)為30°60°.

故答案為:30°60°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)Aa,0),Bcc),C0,c),且滿(mǎn)足P點(diǎn)從A點(diǎn)出發(fā)沿x軸正方向以每秒2個(gè)單位長(zhǎng)度的速度勻速移動(dòng),Q點(diǎn)從O點(diǎn)出發(fā)沿y軸負(fù)方向以每秒1個(gè)單位長(zhǎng)度的速度勻速移動(dòng).

1)直接寫(xiě)出點(diǎn)B的坐標(biāo),AOBC位置關(guān)系是;

2)當(dāng)P、Q分別是線(xiàn)段AO,OC上時(shí),連接PBQB,使,求出點(diǎn)P的坐標(biāo);

3)在P、Q的運(yùn)動(dòng)過(guò)程中,當(dāng)∠CBQ=30°時(shí),請(qǐng)?zhí)骄俊?/span>OPQ和∠PQB的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四張撲克牌方塊2、黑桃4、黑桃5、梅花5的牌面如圖l,將撲克牌洗勻后,如圖2背面朝上放置在桌面上.小亮和小明設(shè)計(jì)的游戲規(guī)則是兩人同時(shí)抽取一張撲克牌,兩張牌面數(shù)字之和為奇數(shù)時(shí),小亮獲勝;否則小明獲勝.請(qǐng)問(wèn)這個(gè)游戲規(guī)則公平嗎?并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,E,F□ABCD 的對(duì)角線(xiàn)BD上的兩點(diǎn),且BE=DF

求證:AE∥CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知(a+b2=7,(a-b2=4,求a2+b2ab的值.

2)分解因式:

x2-8xy+16y2

②(x+y+12-x-y+12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.

(1)求點(diǎn)A的坐標(biāo);

(2)當(dāng)SABC=15時(shí),求該拋物線(xiàn)的表達(dá)式;

(3)在(2)的條件下,經(jīng)過(guò)點(diǎn)C的直線(xiàn)與拋物線(xiàn)的另一個(gè)交點(diǎn)為D.該拋物線(xiàn)在直線(xiàn)上方的部分與線(xiàn)段CD組成一個(gè)新函數(shù)的圖象請(qǐng)結(jié)合圖象回答:若新函數(shù)的最小值大于﹣8,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小紅用一張長(zhǎng)方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB8cm,長(zhǎng)BC10cm.當(dāng)小紅折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過(guò)調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷(xiāo)售.

1)若將這種水果每斤的售價(jià)降低x元,則每天的銷(xiāo)售量是 斤(用含x的代數(shù)式表示);

2)銷(xiāo)售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案