【題目】如圖,平面直角坐標(biāo)系中,矩形 OABC 的 頂 點(diǎn) A(0,3),C(- 1,0). 將 矩 形 OABC 繞原點(diǎn)順時(shí)針旋轉(zhuǎn) 900,得到矩形 OA’B’C’.解答下列問題:
(1)求出直線 BB’的函數(shù)解析式;
(2)直線 BB’與 x 軸交于點(diǎn) M、與 y 軸交于點(diǎn)N,拋物線 y = ax2+ bx + c 的圖象經(jīng)過點(diǎn)C、M、N,求拋物線的函數(shù)解析式.
(3)將△MON 沿直線 MN 翻折,點(diǎn) O 落在點(diǎn)P 處,請你判斷點(diǎn) P 是否在拋物線上,說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知銳角∠AOB,射線OC不與OA,OB重合,OM,ON分別平分∠AOC,∠BOC.
(1)當(dāng)OC在∠AOB的內(nèi)部
①若∠BOC=50°,∠AOC=20°,求∠MON的大。
②若∠MON=30°,求∠AOB的大小;
(2)當(dāng)射線OC在∠AOB外部,且∠AOB=80°,請直接寫出∠MON的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綠水青山就是金山銀山,國家倡導(dǎo)全民植樹。在今年3月12日植樹節(jié)當(dāng)天,某校七年級一班48名學(xué)生全部參加了植樹活動(dòng),男生每人栽種4株,女生每人栽種3株,全班共栽種170株。
(1)該班男、女生各為多少人?
(2)學(xué)校選擇購買甲、乙兩種樹苗,甲樹苗 ,乙樹苗 .如果要使購買樹苗的錢不超過1200元,那么最多可以購買甲樹苗多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AO為Rt△ABC的角平分線,∠ACB=90°,,以O為圓心,OC 為半徑的圓分別交AO,BC于點(diǎn)D,E,連接ED并延長交AC于點(diǎn)F.
(1)求證:AB是⊙O的切線;
(2)求的值。
(3)若⊙O的半徑為4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,點(diǎn) C 在以 AB 為直徑的⊙O 上,點(diǎn) D 在 AB 的延長線上,∠BCD =∠A.
(1)求證:CD 為⊙O 的切線;
(2)過點(diǎn) C 作 CE⊥AB 于點(diǎn) E.若 CE = 2,cos D =,求 AD 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司到果品基地購買某種優(yōu)質(zhì)水果慰問醫(yī)務(wù)工作者,果品基地對購買量在3000kg以上(含3000kg)的顧客采用兩種銷售方案.甲方案:每千克9元,由基地送貨上門;乙方案:每千克8元,由顧客自己租車運(yùn)回.已知該公司租車從基地到公司的運(yùn)輸費(fèi)用為5000元.
(1)分別寫出該公司兩種購買方案付款金額y(元)與所購買的水果量x(kg)之間的函數(shù)關(guān)系式.
(2)當(dāng)購買量在哪一范圍時(shí),選擇哪種購買方案付款最少?并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的兩個(gè)實(shí)數(shù)根.
(1)是否存在實(shí)數(shù)a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,請你說明理由;
(2)求使(x1+1)(x2+1)為正整數(shù)的實(shí)數(shù)a的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:①BE=DF;②∠AEB=75°;③CE=2;④S正方形ABCD=2+,其中正確答案是( )
A.①②B.②③C.①②④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)0 為Rt△ABC斜邊AB上的一點(diǎn),以OA 為半徑的☉O與BC切于點(diǎn)D,與AC 交于點(diǎn)E,連接AD.
(1) 求證: AD平分∠BAC;
(2)若∠BAC= 60°,OA=4,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com