【題目】如圖,矩形紙片ABCD中,AD5,AB3.若M為射線AD上的一個(gè)動(dòng)點(diǎn),將△ABM沿BM折疊得到△NBM.若△NBC是直角三角形.則所有符合條件的M點(diǎn)所對應(yīng)的AM長度的和為_____

【答案】10

【解析】

根據(jù)四邊形ABCD為矩形以及折疊的性質(zhì)得到∠A=MNB=90°,由M為射線AD上的一個(gè)動(dòng)點(diǎn)可知若NBC是直角三角形,∠NBC=90°與∠NCB=90°都不符合題意,只有∠BNC=90°.然后分N在矩形ABCD內(nèi)部與N在矩形ABCD外部兩種情況進(jìn)行討論,利用勾股定理求得結(jié)論即可.

∵四邊形ABCD為矩形,

∴∠BAD90°

∵將ABM沿BM折疊得到NBM,

∴∠MAB=∠MNB90°

M為射線AD上的一個(gè)動(dòng)點(diǎn),NBC是直角三角形,

∴∠NBC90°與∠NCB90°都不符合題意,

∴只有∠BNC90°

當(dāng)∠BNC90°N在矩形ABCD內(nèi)部,如圖1

∵∠BNC=∠MNB90°

M、NC三點(diǎn)共線,

ABBN3BC5,∠BNC90°,

NC4

設(shè)AMMNx

MD5x,MC4+x

∴在RtMDC中,CD2+MD2MC2

32+5x2=(4+x2,

解得x1;

當(dāng)∠BNC90°,N在矩形ABCD外部時(shí),如圖2

∵∠BNC=∠MNB90°,

M、CN三點(diǎn)共線,

ABBN3,BC5,∠BNC90°,

NC4,

設(shè)AMMNy

MDy5,MCy4,

∴在RtMDC中,CD2+MD2MC2,

32+y52=(y42

解得y9,

則所有符合條件的M點(diǎn)所對應(yīng)的AM和為1+910

故答案為10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.

下面是小明的探究過程,請補(bǔ)充完整:

自變量x的取值范圍是全體實(shí)數(shù),xy的幾組對應(yīng)數(shù)值如下表:

x

0

1

2

y

0

0

4

0

m

其中_______

如圖,在平面直角坐標(biāo)系xOy中,把該函數(shù)的圖象補(bǔ)充完整;

觀察函數(shù)圖象,寫出一條該函數(shù)的性質(zhì)______;

進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):

方程______個(gè)互不相等的實(shí)數(shù)根;

有兩個(gè)點(diǎn)在此函數(shù)圖象上,當(dāng)時(shí),比較的大小關(guān)系為:______;

若關(guān)于x的方程4個(gè)互不相等的實(shí)數(shù)根,則a的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,且當(dāng)x=﹣1x3時(shí),y值相等.直線y與拋物線有兩個(gè)交點(diǎn),其中一個(gè)交點(diǎn)的橫坐標(biāo)是6,另一個(gè)交點(diǎn)是這條拋物線的頂點(diǎn)M

(1)求這條拋物線的表達(dá)式.

(2)動(dòng)點(diǎn)P從原點(diǎn)O出發(fā),在線段OB上以每秒1個(gè)單位長度的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),在線段BC上以每秒2個(gè)單位長度的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)立即停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

①求t的取值范圍.

②若使△BPQ為直角三角形,請求出符合條件的t值;

t為何值時(shí),四邊形ACQP的面積有最小值,最小值是多少?直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】材料一:一個(gè)大于1的正整數(shù),若被除余1,被除余1,被除余1……,被3除余1,被2除余1,那么稱這個(gè)正整數(shù)為“明禮”數(shù)(取最大),例如:73(被5除余3)被4除余1,被3除余1,被2除余1,那么73為“明四禮”數(shù).

材料二:設(shè),……,32的最小公倍數(shù)為,那么“明禮”數(shù)可以表示為為正整數(shù)),例如:6,5,4,3,2的最小公倍數(shù)為60,那么“明六禮”數(shù)可以表示為為正整數(shù))

1)求出最小的三位“明三禮”數(shù);

2)一個(gè)“明四禮”數(shù)與“明五禮”數(shù)的和為170,求出這兩個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價(jià)每增加2元,每天銷售量會(huì)減少1件.設(shè)銷售單價(jià)增加元,每天售出件.

1)請寫出之間的函數(shù)表達(dá)式;

2)當(dāng)為多少時(shí),超市每天銷售這種玩具可獲利潤2250元?

3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時(shí)最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合).以為頂點(diǎn)作,射線邊于點(diǎn),過點(diǎn)交射線于點(diǎn).

1)求證:;

2)當(dāng)平分時(shí),求的長;

3)當(dāng)是等腰三角形時(shí),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)為線段的中點(diǎn),的平分線軸相較于點(diǎn),、兩點(diǎn)關(guān)于軸對稱.

1)一動(dòng)點(diǎn)從點(diǎn)出發(fā),沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到直線上的點(diǎn),再沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)處.當(dāng)的運(yùn)動(dòng)路徑最短時(shí),求此時(shí)點(diǎn)的坐標(biāo)及點(diǎn)所走最短路徑的長.

2)點(diǎn)沿直線水平向右運(yùn)動(dòng)得點(diǎn),平面內(nèi)是否存在點(diǎn)使得以、為頂點(diǎn)的四邊形為菱形,若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點(diǎn)E是邊AB上一個(gè)動(dòng)點(diǎn),點(diǎn)F,M,N分別是DC,DECE的中點(diǎn).

1)求證:△DMF≌△FNC;

2)若四邊形MFNE是正方形,求ADAB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB為等腰三角形,頂點(diǎn)A的坐標(biāo)(2,),底邊OBx軸上.將AOB繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)一定角度后得A′O′B,點(diǎn)A的對應(yīng)點(diǎn)A′x軸上,則點(diǎn)O′的坐標(biāo)為(  )

A. , B. , C. , D. ,4

查看答案和解析>>

同步練習(xí)冊答案