【題目】如圖1,長方形放置在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn),動(dòng)點(diǎn)從出發(fā),沿以每秒個(gè)單位的速度運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)從出發(fā),沿以每秒個(gè)單位的速度運(yùn)動(dòng).當(dāng)其中一點(diǎn)到達(dá)點(diǎn)時(shí),兩動(dòng)點(diǎn)同時(shí)停止運(yùn)動(dòng)設(shè)運(yùn)動(dòng)時(shí)間為.
(1)當(dāng)______時(shí),點(diǎn)追上點(diǎn),此時(shí)點(diǎn)的坐標(biāo)為_______.
(2)當(dāng)時(shí),分別取、的中點(diǎn)、,如果四邊形的面積等于,請求出時(shí)間的取值;
(3)如圖2,連接,已知,在(2)問的條件下,過點(diǎn)作于點(diǎn),問在長方形的四條邊上是否存在點(diǎn),使得線段,若存在,請直接寫出點(diǎn)的坐標(biāo),若不存在,請說明理由.
【答案】(1)4s,(6,6);(2)或;(3)存在,點(diǎn)N的坐標(biāo)為 或 或 或
【解析】
(1)根據(jù)速度差×追擊時(shí)間=追擊距離,構(gòu)建方程即可解決問題.
(2)分兩種情形:如圖1中,當(dāng)0<t<2時(shí),S四邊形OEQF=S四邊形OAQF-S△AEQ=18,如圖2中,當(dāng)2<t≤3時(shí),S四邊形OEQF=SOPQF-S△EPQ=18,分別構(gòu)建方程求解即可.
(3)根據(jù)(2)中兩種情形,畫出圖形利用相似三角形的性質(zhì)求出PM,即可解決問題.
解:(1)∵A(8,0),C(0,6),四邊形OABC是矩形,
∴OA=BC=8,AB=OC=6,
設(shè)t秒后追上.
由題意:4t-2t=8,
∴t=4.
∴P(6,6).
故答案為4s,(6,6).
(2)如圖1中,當(dāng)0<t<2時(shí),S四邊形OEQF=S四邊形OAQF-S△AEQ=18,
解得 或(舍)
如圖2中,當(dāng)時(shí)
∴(3+8-2t)8-(8-2t)4=18,
∴t=.
(3)如圖3中連接CP,當(dāng)t=時(shí),P(4,0),
點(diǎn) 在OA邊上 或
當(dāng) 時(shí) 如圖3-2中,同法可得
點(diǎn)在邊上, 或
綜上所述,滿足條件的點(diǎn)N的坐標(biāo)為 或 或 或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( )
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費(fèi);超過1千克,超過的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,對角線AC、BD交于點(diǎn)O(如圖),則圖中全等三角形的對數(shù)為( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學(xué)習(xí)用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”.
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下三個(gè)問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,∠A=40°,則∠ABX+∠ACX= °;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與探究
綜合實(shí)踐課,老師把一個(gè)足夠大的等腰直角三角尺AMN靠在一個(gè)正方形紙片ABCD的一側(cè),使邊AM與AD在同
一直線上(如圖1),其中∠AMN=90°,AM=MN.
(1)猜想發(fā)現(xiàn)
老師將三角尺AMN繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α.如圖2,當(dāng)0<α<45°時(shí),邊AM,AN分別與直線BC,CD交于點(diǎn)E,F(xiàn),連結(jié)EF.小明同學(xué)探究發(fā)現(xiàn),線段EF,BE,DF滿足EF=BE﹣DF;如圖3,當(dāng)45°<α<90°時(shí),其它條件不變.
①填空:∠DAF+∠BAE=度;
②猜想:線段EF,BE,DF三者之間的數(shù)量關(guān)系是: .
(2)證明你的猜想;
(3)拓展探究
在45°<α<90°的情形下,連結(jié)BD,分別交AM,AN于點(diǎn)G,H,如圖4連結(jié)EH,試證明:EH⊥AN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,點(diǎn)P是平行四邊形ABCD對角線AC、BD的交點(diǎn),若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4則S1、S2、S3、S4的關(guān)系為S1=S2=S3=S4.請你說明理由;
(2)變式1:如圖2,點(diǎn)P是平行四邊形ABCD內(nèi)一點(diǎn),連接PA、PB、PC、PD.若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,寫出S1、S2、S3、S4的關(guān)系式;
(3)變式2:如圖3,點(diǎn)P是四邊形ABCD對角線AC、BD的交點(diǎn)若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,寫出S1、S2、S3、S4的關(guān)系式.請你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年10月份某商場用19600元同時(shí)購進(jìn)A、B兩種新型節(jié)能日光燈共440盞,A型日光燈每盞進(jìn)價(jià)為40元,售價(jià)為60元,B型日光燈每盞進(jìn)價(jià)為50元,售價(jià)為80元.
(1)求10月份兩種新型節(jié)能日光燈各購進(jìn)多少盞?
(2)將10月份購買的日光燈從生產(chǎn)基地運(yùn)往商場的過程中,A型日光燈出現(xiàn)的損壞,B型日光燈完好無損,商場決定對A、B兩種日光燈的售價(jià)進(jìn)行調(diào)整,使這批日光燈全部售完后,商場可獲得10664元的利潤型日光燈在原售價(jià)基礎(chǔ)上提高,問A型日光燈調(diào)整后的售價(jià)為多少元?
(3)進(jìn)入11月份,B型日光燈的需求量增大,于是商場在籌備“雙十一”促銷活動(dòng)時(shí),決定去甲、乙兩個(gè)生產(chǎn)基地只購進(jìn)一批B型日光燈,甲、乙生產(chǎn)基地給出了不同的優(yōu)惠措施:
甲生產(chǎn)基地:B型日光燈出廠價(jià)為每盞50元,折扣如表一所示
乙生產(chǎn)基地:B型日光燈出廠價(jià)為每盞47元,同時(shí)當(dāng)出廠總金額達(dá)一定數(shù)量后還可按表二返現(xiàn)金.
表一
甲生產(chǎn)基地 | |
一次性購買的數(shù)量 | 折扣數(shù) |
不超過150盞的部分 | 折 |
超過150盞的部分 | 9折 |
表二
乙生產(chǎn)基地 | |
出廠總金額 | 返現(xiàn)金 |
不超過5640元 | 0元 |
超過5640元,但不超過9353元 | 返現(xiàn)300元 |
超過9353元 | 先返現(xiàn)出廠總金額的后,再返現(xiàn)206元 |
已知該商場在甲生產(chǎn)基地購買B型日光燈共支付7350元,在乙生產(chǎn)基地購買B型日光燈共支付9006元,若將在兩個(gè)生產(chǎn)基地購買的B型日光燈的總量改由在乙生產(chǎn)基地一次性購買,則支付總金額比在甲、乙兩生產(chǎn)基地分別購買的支付金額之和可節(jié)約多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com