【題目】(1)如圖1,點(diǎn)P是平行四邊形ABCD對(duì)角線AC、BD的交點(diǎn),若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4則S1、S2、S3、S4的關(guān)系為S1=S2=S3=S4.請(qǐng)你說明理由;
(2)變式1:如圖2,點(diǎn)P是平行四邊形ABCD內(nèi)一點(diǎn),連接PA、PB、PC、PD.若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,寫出S1、S2、S3、S4的關(guān)系式;
(3)變式2:如圖3,點(diǎn)P是四邊形ABCD對(duì)角線AC、BD的交點(diǎn)若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,寫出S1、S2、S3、S4的關(guān)系式.請(qǐng)你說明理由.
【答案】(1)理由見解析;(2)S1+S3=S2+S4;(3)S1S3=S2S4;理由見解析
【解析】
(1)根據(jù)平行四邊形的對(duì)角相互相平分與如果三角形等底等高面積相同,得解;
(2)可以根據(jù)△ABD≌△CDB求得;
(3)由△ABP中AP邊上的高與△BCP中CP邊上的高相同與△PAD中AP邊上的高與△PCD中CP邊上的高相同,可得即,即,所以,即.
(1)∵四邊形ABCD是平行四邊形,
∴AP=CP,
又∵△ABP中AP邊上的高與△BCP中CP邊上的高相同,
∴S△PAB=S△PBC,
即S1=S2,
同理可證S2=S3S3=S4,
∴S1=S2=S3=S4;
(2)S1+S3=S2+S4;
(3);
理由:
∵△ABP中AP邊上的高與△BCP中CP邊上的高相同,
∴即,
∵△PAD中AP邊上的高與△PCD中CP邊上的高相同,
∴即,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C=90°,點(diǎn)O是AB的中點(diǎn),邊AC的長(zhǎng)為,將一塊邊長(zhǎng)足夠大的三角板的直角頂點(diǎn)放在點(diǎn)O處,將三角板繞點(diǎn)O旋轉(zhuǎn),始終保持三角板的一條直角邊與 AC相交,交點(diǎn)為點(diǎn)D,另一條直角邊與BC相交,交點(diǎn)為點(diǎn)E.證明:等腰直角三角形ABC的邊被三角板覆蓋部分的兩條線段CD與CE長(zhǎng)度之和為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=a1(x﹣2)2+2與y=a2(x﹣2)2﹣3的頂點(diǎn)分別為A,B,與x軸分別交于點(diǎn)O,C,D,E.若點(diǎn)D的坐標(biāo)為(﹣1,0),則△ADE與△BOC的面積比為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長(zhǎng)方形放置在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn),動(dòng)點(diǎn)從出發(fā),沿以每秒個(gè)單位的速度運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)從出發(fā),沿以每秒個(gè)單位的速度運(yùn)動(dòng).當(dāng)其中一點(diǎn)到達(dá)點(diǎn)時(shí),兩動(dòng)點(diǎn)同時(shí)停止運(yùn)動(dòng)設(shè)運(yùn)動(dòng)時(shí)間為.
(1)當(dāng)______時(shí),點(diǎn)追上點(diǎn),此時(shí)點(diǎn)的坐標(biāo)為_______.
(2)當(dāng)時(shí),分別取、的中點(diǎn)、,如果四邊形的面積等于,請(qǐng)求出時(shí)間的取值;
(3)如圖2,連接,已知,在(2)問的條件下,過點(diǎn)作于點(diǎn),問在長(zhǎng)方形的四條邊上是否存在點(diǎn),使得線段,若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,P是CD上一點(diǎn),且AP和BP分別平分∠DAB和∠CBA.
(1)求∠APB的度數(shù);
(2)如果AD=5 cm,AP=8 cm,求△APB的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定兩數(shù)a,b之間的一種運(yùn)算,記作(a,b):如果,那么(a,b)=c.
例如:因?yàn)?/span>23=8,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:
(3,9)=_____,(5,125)=_____,(,)=_____,(-2,-32)=_____.
(2)令,,,試說明下列等式成立的理由:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等腰直角三角形,∠ABC=90°,AB=BC,點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)B是y軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)C在點(diǎn)B的上方,
(1)如圖1當(dāng)點(diǎn)A的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(0,1)時(shí),求點(diǎn)C的坐標(biāo);
(2)設(shè)點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b).過點(diǎn)C作CD⊥y軸于點(diǎn)D,在點(diǎn)B運(yùn)動(dòng)過程中(不包含△ABC的一邊與坐標(biāo)軸重合的情況),猜想線段OD的長(zhǎng)與a、b的數(shù)量關(guān)系,并說明理由;
(3)在(2)的條件下如圖4,當(dāng)x軸平分∠BAC時(shí),BC交x軸于點(diǎn)E,過點(diǎn)作CF⊥x軸于點(diǎn)F.說明此時(shí)線段CF與AE的數(shù)量關(guān)系(用含a、b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1+∠2=180°,∠3=B,
(1)證明:EF∥AB.
(2)試判斷∠AED與∠C的大小關(guān)系,并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD、AE分別是△ABC的高和角平分線,∠B=30°,∠C=50°。
(1)求∠DAE的度數(shù);
(2)試寫出∠DAE與∠C、∠B之間的數(shù)量關(guān)系(不必說明理由)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com