【題目】如圖所示,在方格紙中,ABC的三個(gè)頂點(diǎn)及D,EF,G,H五個(gè)點(diǎn)分別位于小正方形的頂點(diǎn)上.

(1)現(xiàn)以DE,F,G,H中的三個(gè)點(diǎn)為頂點(diǎn)畫(huà)三角形,在所畫(huà)的三角形中與ABC不全等但面積相等的三角形是 (只需要填一個(gè)三角形);

(2)先從DE兩個(gè)點(diǎn)中任意取一個(gè)點(diǎn),再?gòu)?/span>F,G,H三個(gè)點(diǎn)中任意取兩個(gè)不同的點(diǎn),以所取的這三個(gè)點(diǎn)為頂點(diǎn)畫(huà)三角形,畫(huà)樹(shù)狀圖求所畫(huà)三角形與ABC面積相等的概率.

【答案】(1)△DFG或△DHF;(2).

【解析】試題分析:本題綜合考查了三角形的面積和概率.1)、根據(jù)同(等)底同(等)高的三角形面積相等進(jìn)行解答;(2)、畫(huà)樹(shù)狀圖求概率.

試題解析:(1)、△DFG△DHF

2)、畫(huà)樹(shù)狀圖如圖所示:

由樹(shù)狀圖可知共有6種等可能結(jié)果, 其中與△ABC面積相等的有3種,即△DHF,△DGF,△EGF

所以所畫(huà)三角形與△ABC面積相等的概率P=

答:所畫(huà)三角形與△ABC面積相等的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DF⊥AC交AC的延長(zhǎng)線于F,連接CD,給出四個(gè)結(jié)論:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB—BC=2FC;其中正確的結(jié)論有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(2a)3a2的結(jié)果是( )
A.2a5
B.2a6
C.8a5
D.8a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】各頂點(diǎn)都在方格紙格點(diǎn)(橫豎格子線的交錯(cuò)點(diǎn))上的多邊形稱(chēng)為格點(diǎn)多邊形.如何計(jì)算它的面積?奧地利數(shù)學(xué)家皮克(GPick,18591942年)證明了格點(diǎn)多邊形的面積公式S=a+b1,其中a表示多邊形內(nèi)部的格點(diǎn)數(shù),b表示多邊形邊界上的格點(diǎn)數(shù),S表示多邊形的面積.如圖,a=4,b=6,S=4+×61=6

1)請(qǐng)?jiān)趫D中畫(huà)一個(gè)格點(diǎn)正方形,使它的內(nèi)部只含有4個(gè)格點(diǎn),并寫(xiě)出它的面積.

2)請(qǐng)?jiān)趫D乙中畫(huà)一個(gè)格點(diǎn)三角形,使它的面積為,且每條邊上除頂點(diǎn)外無(wú)其它格點(diǎn).(注:圖甲、圖乙在答題紙上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線yx24x1的頂點(diǎn)坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上有分別表示—72的兩點(diǎn)A、B,若將數(shù)軸沿點(diǎn)B對(duì)折,使點(diǎn)A與數(shù)軸上的另一點(diǎn)C重合,則點(diǎn)C表示的數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點(diǎn)上

(1)畫(huà)出△ABC關(guān)于x軸的對(duì)稱(chēng)圖形△A1B1C1

(2)將△A1B1C1沿x軸方向向左平移3個(gè)單位后得到△A2B2C2,寫(xiě)出頂點(diǎn)A2,B2,C2的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)Pm1,4)與點(diǎn)Q2n2)關(guān)于y軸對(duì)稱(chēng),則點(diǎn)Amn)所在的象限是( 。

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)問(wèn)題:計(jì)算(其中mn都是正整數(shù),且m≥2n≥1).

探究問(wèn)題:為解決上面的數(shù)學(xué)問(wèn)題,我們運(yùn)用數(shù)形結(jié)合的思想方法,通過(guò)不斷地分割一個(gè)面積為1的正方形,把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來(lái),并采取一般問(wèn)題特殊化的策略來(lái)進(jìn)行探究.

探究一:計(jì)算

1次分割,把正方形的面積二等分,其中陰影部分的面積為

2次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,陰影部分的面積之和為;

3次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,;

n次分割,把上次分割圖中空白部分的面積最后二等分,所有陰影部分的面積之和為,最后空白部分的面積是

根據(jù)第n次分割圖可得等式: =1

探究二:計(jì)算

1次分割,把正方形的面積三等分,其中陰影部分的面積為

2次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,陰影部分的面積之和為;

3次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,;

n次分割,把上次分割圖中空白部分的面積最后三等分,所有陰影部分的面積之和為,最后空白部分的面積是

根據(jù)第n次分割圖可得等式: =1,

兩邊同除以2,得=.

探究三:計(jì)算

(仿照上述方法,只畫(huà)出第n次分割圖,在圖上標(biāo)注陰影部分面積,并寫(xiě)出探究過(guò)程)

解決問(wèn)題:計(jì)算

(只需畫(huà)出第n次分割圖,在圖上標(biāo)注陰影部分面積,并完成以下填空)

根據(jù)第n次分割圖可得等式:      

所以, =      

拓廣應(yīng)用:計(jì)算

查看答案和解析>>

同步練習(xí)冊(cè)答案