【題目】如圖,在平面直角坐標系中,△ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點上

(1)畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1;

(2)將△A1B1C1沿x軸方向向左平移3個單位后得到△A2B2C2,寫出頂點A2,B2,C2的坐標

【答案】(1)答案見解析;(2)A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).

【解析】

試題分析:(1)直接利用關(guān)于x軸對稱點的性質(zhì)得出各對應點位置進而得出答案;

(2)直接利用平移的性質(zhì)得出各對應點位置進而得出答案.

試題解析:(1)如圖所示:△A1B1C1,即為所求;

(2)如圖所示:△A2B2C2,即為所求,點A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:

①AC=AD;②BD⊥AC;③四邊形ACED是菱形

其中正確的個數(shù)是(

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格中,每個小正方形的邊長都是單位1,△ABC在平面直角坐標系中的位置如圖

(1)畫出將△ABC向右平移2個單位得到△A1B1C1;

(2)畫出將△ABC繞點O順時針方向旋轉(zhuǎn)90°得到的△A2B2C2;

(3)求△A1B1C1與△A2B2C2重合部分的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在方格紙中,ABC的三個頂點及D,E,F,G,H五個點分別位于小正方形的頂點上.

(1)現(xiàn)以DE,FG,H中的三個點為頂點畫三角形,在所畫的三角形中與ABC不全等但面積相等的三角形是 (只需要填一個三角形);

(2)先從D,E兩個點中任意取一個點,再從F,GH三個點中任意取兩個不同的點,以所取的這三個點為頂點畫三角形,畫樹狀圖求所畫三角形與ABC面積相等的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)的圖象上

(1)求反比例函數(shù)的表達式;

(2)在x軸的負半軸上存在一點P,使得S△AOP=S△AOB,求點P的坐標;

(3)若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上,說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一臺電視機的原價是2000元,若按原價的八折出售,則購買a臺這樣的電視機需要元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線與x軸交于A(6,0)、B(,0)兩點,與y軸交于點C,過拋物線上點M(1,3)作MN⊥x軸于點N,連接OM

(1)求此拋物線的解析式;

(2)如圖1,將△OMN沿x軸向右平移t個單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點E、F

①當點F為M′O′的中點時,求t的值;

②如圖2,若直線M′N′與拋物線相交于點G,過點G作GH∥M′O′交AC于點H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時t的值;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( )

A. a2a4=a8 B. 2a2+a2=3a4 C. a6÷a2=a3 D. ab23=a3b6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】微電子技術(shù)的不斷進步,使半導體材料的精細加工尺寸大幅度縮小.某種電子元件的面積大約為0.000000 7平方毫米,用科學記數(shù)法表示為平方毫米.

查看答案和解析>>

同步練習冊答案