【題目】如圖,△ABC中,點(diǎn)E在BC邊上,AE=AB,將線段AC繞A點(diǎn)旋轉(zhuǎn)到AF的位置,使得∠CAF=∠BAE,連接EF,EF與AC交于點(diǎn)G.
(1)求證:EF=BC;
(2)若∠ABC=62°,∠ACB=29°,求∠FGC的度數(shù).
【答案】(1)見解析;(2)85°.
【解析】
(1)由旋轉(zhuǎn)的性質(zhì)可得AC=AF,利用SAS證明△ABC≌△AEF,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得出EF=BC;
(2)根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理求出∠BAE=180°-62°×2=56°,那么∠FAG=56°.由△ABC≌△AEF,得出∠F=∠ACB=29°,再根據(jù)三角形外角的性質(zhì)即可求出∠FGC=∠FAG+∠F=85°.
(1)證明:∵∠CAF=∠BAE,
∴∠BAC=∠EAF.
∵將線段AC繞A點(diǎn)旋轉(zhuǎn)到AF的位置,
∴AC=AF.
在△ABC與△AEF中,
,
∴△ABC≌△AEF(SAS),
∴EF=BC;
(2)解:∵AB=AE,∠ABC=62°,
∴∠BAE=180°-62°×2=56°,
∴∠CAF=∠BAE =56°.
∵△ABC≌△AEF,
∴∠F=∠ACB=29°,
∴∠FGC=∠CAF+∠F=56°+29°=85°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)D為AB邊上的一點(diǎn),
(1)求證:△ACE≌△BCD;
(2)若DE=13,BD=12,求線段AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是規(guī)格為8×8的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:
(1)在網(wǎng)格中建立平面直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(-2,4),B點(diǎn)坐標(biāo)為(-4,2);
(2)在(1)的前提下,在第二象限內(nèi)的格點(diǎn)上找一點(diǎn)C,使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形,且腰長是無理數(shù),則C點(diǎn)的坐標(biāo)是;
(3)求((2)中△ABC的周長(結(jié)果保留根號(hào));
(4)畫出((2)中△ABC關(guān)于y軸對(duì)稱的△A'B'C'.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+3與坐標(biāo)軸分別交于A,B兩點(diǎn),拋物線y=ax2+bx-3a經(jīng)過點(diǎn)A,B,頂點(diǎn)為C,連接CB并延長交x軸于點(diǎn)E,點(diǎn)D與點(diǎn)B關(guān)于拋物線的對(duì)稱軸MN對(duì)稱.
(1)求拋物線的解析式及頂點(diǎn)C的坐標(biāo);
(2)求證:四邊形ABCD是直角梯形.
【答案】(1)y=-x2-2x+3,頂點(diǎn)C的坐標(biāo)為(-1,4);(2)證明見解析.
【解析】
(1)解:∵y=x+3與坐標(biāo)軸分別交與A,B兩點(diǎn),∴A點(diǎn)坐標(biāo)(-3,0)、B點(diǎn)坐標(biāo)(0,3).
∵拋物線y=ax2+bx-3a經(jīng)過A,B兩點(diǎn),
∴
解得
∴拋物線解析式為:y=-x2-2x+3.
∵y=-x2-2x+3=-(x+1)2+4,
∴頂點(diǎn)C的坐標(biāo)為(-1,4).
(2)證明:∵B,D關(guān)于MN對(duì)稱,C(-1,4),B(0,3),
∴D(-2,3).∵B(0,3),A(-3,0),∴OA=OB.
又∠AOB=90°,∴∠ABO=∠BAO=45°.
∵B,D關(guān)于MN對(duì)稱,∴BD⊥MN.
又∵M(jìn)N⊥x軸,∴BD∥x軸.
∴∠DBA=∠BAO=45°.
∴∠DBO=∠DBA+∠ABO=45°+45°=90°.
設(shè)直線BC的解析式為y=kx+b,
把B(0,3),C(-1,4)代入得,
解得
∴y=-x+3.
當(dāng)y=0時(shí),-x+3=0,x=3,∴E(3,0).
∴OB=OE,又∵∠BOE=90°,
∴∠OEB=∠OBE=∠BAO=45°.
∴∠ABE=180°-∠BAE-∠BEA=90°.
∴∠ABC=180°-∠ABE=90°.
∴∠CBD=∠ABC-∠ABD=45°.
∵CM⊥BD,∴∠MCB=45°.
∵B,D關(guān)于MN對(duì)稱,
∴∠CDM=∠CBD=45°,CD∥AB.
又∵AD與BC不平行,∴四邊形ABCD是梯形.
∵∠ABC=90°,∴四邊形ABCD是直角梯形.
【題型】解答題
【結(jié)束】
21
【題目】有兩組卡片,第一組三張卡片上都寫著A、B、B,第二組五張卡片上都寫著A、B、B、D、E.試用列表法求出從每組卡片中各抽取一張,兩張都是B的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中,裝有三個(gè)分別標(biāo)記為“1”、“2”、“3”的球,這三個(gè)球除了標(biāo)記不同外,其余均相同.?dāng)噭蚝,從中摸出一個(gè)球,記錄球上的標(biāo)記后放回袋中并攪勻,再從中摸出一個(gè)球,再次記錄球上的標(biāo)記.
(1)請(qǐng)列出上述實(shí)驗(yàn)中所記錄球上標(biāo)記的所有可能的結(jié)果;
(2)求兩次記錄球上標(biāo)記均為“1”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)F,點(diǎn)E在BD上,
且.
(1)求證:∠BAE=∠CAD;
(2)求證:△ABE∽△ACD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名學(xué)生參加數(shù)學(xué)素質(zhì)測(cè)試(有四項(xiàng)),每項(xiàng)測(cè)試成績采用百分制,成績?nèi)绫恚?/span>
學(xué)生 | 數(shù)與代數(shù) | 空間與圖形 | 統(tǒng)計(jì)與概率 | 綜合與實(shí)踐 | 平均成績 | 方差 |
甲 | 87 | 93 | 91 | 85 | 89 | ______ |
乙 | 89 | 96 | 91 | 80 | ______ | ______ |
(1)將表格中空缺的數(shù)據(jù)補(bǔ)充完整,根據(jù)表中信息判斷哪個(gè)學(xué)生數(shù)學(xué)綜合素質(zhì)測(cè)試成績更穩(wěn)定?請(qǐng)說明理由.
(2)若數(shù)與代數(shù)、空間與圖形、統(tǒng)計(jì)與概率、綜合與實(shí)踐的成績按,計(jì)算哪個(gè)學(xué)生數(shù)學(xué)綜合素質(zhì)測(cè)試成績更好?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生小明將線段的垂直平分線上的點(diǎn),稱作線段的“軸點(diǎn)”.其中,當(dāng)時(shí),稱為線段的“長軸點(diǎn)”;當(dāng)時(shí),稱為線段的“短軸點(diǎn)”.
(1)如圖1,點(diǎn),的坐標(biāo)分別為,,則在,,,中線段的“短軸點(diǎn)”是______.
(2)如圖2,點(diǎn)的坐標(biāo)為,點(diǎn)在軸正半軸上,且.
①若為線段的“長軸點(diǎn)”,則點(diǎn)的橫坐標(biāo)的取值范圍是( )
A. B. C. D.或
②點(diǎn)為軸上的動(dòng)點(diǎn),點(diǎn),在線段的垂直平分線的同側(cè).若為線段的“軸點(diǎn)”,當(dāng)線段與的和最小時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com