【題目】某市為了解高峰時段從總站乘16路車出行的人數(shù),隨機(jī)抽查了10個班次乘該路車人數(shù),結(jié)果如下:

14,23,16,2523,28,26,27,23,25

1)計算這10個班次乘車人數(shù)的平均數(shù);

2)如果16路車在高峰時段從總站共出車60個班次,根據(jù)上面的計算結(jié)果,估計在高峰時段從總站乘該路車出行的乘客共有多少?

【答案】(1)23;(2)1380

【解析】試題分析:(1)根據(jù)算術(shù)平均數(shù)的定義列式計算可得;
(2)用樣本中平均每個班次的人數(shù)乘以班次即可得.

試題解析:(1)這10個班次乘車人數(shù)的平均數(shù)為×(14+23+16+25+23+28+26+27+23+25)=23;

(2)60×23=1380,

答:估計在高峰時段從總站乘該路車出行的乘客共有1380人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某開發(fā)公司生產(chǎn)的960件新產(chǎn)品需要精加工后才能投放市場,F(xiàn)有甲、乙兩個工廠都想加工這批產(chǎn)品,已知甲廠單獨(dú)加工這批產(chǎn)品比乙工廠單獨(dú)加工完這批產(chǎn)品多用20,而甲工廠每天加工的數(shù)量是乙工廠每天加工數(shù)量的,甲、乙兩個工廠每天各能加工多少個新產(chǎn)品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB⊙O的直徑,⊙OAC的中點(diǎn)D,DE⊥BC,交BC于點(diǎn)E

1)求證:DE⊙O的切線;

2)如果CD=8,CE=6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,二次函數(shù)y=ax2+bx﹣3的圖象與x軸交于A﹣1,0),點(diǎn)B40),與y軸的交點(diǎn)為C

1)求二次函數(shù)的關(guān)系式;

2)已知點(diǎn)M是線段OB上一動點(diǎn),過點(diǎn)M作平行于y軸的直線l,直線l與拋物線交于點(diǎn)E,與直線BC交于點(diǎn)F,連接CE,若△CEF△OBC相似,求點(diǎn)M的坐標(biāo);

3)已知點(diǎn)Mx軸正半軸上一動點(diǎn),過點(diǎn)M作平行于y軸的直線l,直線l與拋物線交于P,與直線BC交于點(diǎn)Q,連接CP,將△CPQ沿CP翻折后,是否存在這樣的直線l,使得翻折后的點(diǎn)Q剛好落在y軸上?若存在,請求出此時點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人相約登山,甲、乙兩人距地面的高度y()與登山時間x()之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

(1)圖中的t1= 分;

(2)若乙提速后,乙登山的速度是甲登山的速度的3倍,

①則甲登山的速度是 米/分,圖中的t2= 分;

②請求出乙登山過程中,距地面的高度y()與登山時間x()之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某淘寶網(wǎng)店銷售臺燈,每個臺燈售價為60元,每星期可賣出300個,為了促銷,該網(wǎng)店決定降價銷售.市場調(diào)查反映:每降價1元,每星期可多賣30個.已知該款臺燈每個成本為40元,

1)若每個臺燈降x(),則每星期能賣出 個臺燈,每個臺燈的利潤是 元.

2)在顧客得實惠的前提下,該淘寶網(wǎng)店還想獲得6480元的利潤,應(yīng)將每件的售價定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊A1C1C2的周長為1,作C1D1A1C2D1,在C1C2的延長線上取點(diǎn)C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊A2C2C3;作C2D2A2C3D2,在C2C3的延長線上取點(diǎn)C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊A3C3C4;且點(diǎn)A1A2,A3,都在直線C1C2同側(cè),如此下去,則A1C1C2,A2C2C3A3C3C4,,AnCnCn+1的周長和為______.(n≥2,且n為整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)C在線段AB上,AC = 8 cm,CB = 6 cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).

(1)求線段MN的長.

(2)若C為線段AB上任意一點(diǎn),滿足AC+CB=a(cm),其他條件不變,你能猜想出MN的長度嗎?并說明理由.

(3)若C在線段AB的延長線上,且滿足AC-CB=b(cm),M、N分別為AC、BC的中點(diǎn),你能猜想出MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個定點(diǎn),且∠MPN∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長不變,其中正確的個數(shù)為( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習(xí)冊答案