【題目】如圖,AB是O的直徑,且AB=6,點(diǎn)M為O外一點(diǎn),且MA,MC分別切O于點(diǎn)A、C.點(diǎn)D是兩條線段BC與AM延長線的交點(diǎn).

(1)求證:DM=AM;

(2)直接回答:

當(dāng)CM為何值時(shí),四邊形AOCM是正方形?

當(dāng)CM為何值時(shí),CDM為等邊三角形?

【答案】(1)見解析;(2)①當(dāng)CM=OA=3時(shí),四邊形AOCM是正方形;.

【解析】

(1)根據(jù)切線的性質(zhì)得:MAOA,MCOC,證明MAO≌△MAO(HL),得MC=MA,根據(jù)等邊對等角得:∠2=B,由等角的余角相等可得結(jié)論;

(2)①直接可得CM=OA=3;

②先根據(jù)等邊三角形定義可得:DM=CM,D=60°,證明RtOCM≌△OAM(HL),得CM=AM=DM,可得結(jié)論.

(1)連接OM,如圖1,

MA,MC分別切⊙O于點(diǎn)A、C,

MAOA,MCOC,

RtMAORtMCO中,

MO=MO,AO=CO,

∴△MAO≌△MAO(HL),

MC=MA,

OC=OB,

∴∠OCB=B,

又∵∠DCM+OCB=90°,D+B=90°,

∴∠DCM=D,

DM=MC,

DM=MA;

(2)如圖2,

①當(dāng)CM=OA=3時(shí),四邊形AOCM是正方形;

②連接OM,如圖3,

∵△DCM是等邊三角形,

CM=DM,D=60°,

∵∠DAB=90°,

∴∠B=30°,

∴∠AOC=2B=60°,

AB=6,

tanB=tan30°==,

AD=2

設(shè)CM=x,

OC=OA,OM=OM,

RtOCM≌△OAM(HL),

CM=AM=DM,

CM=AD=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B、C、D為矩形的四個(gè)頂點(diǎn),AB=16cm,AD=6cm,動點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)P3cm/s的速度向點(diǎn)B移動,一直到達(dá)B為止,點(diǎn)Q2cm/s的速度向D移動.

(1)P、Q兩點(diǎn)從出發(fā)開始到幾秒時(shí),四邊形APQD為長方形?

(2)P、Q兩點(diǎn)從出發(fā)開始到幾秒時(shí)?四邊形PBCQ的面積為33cm2;

(3)P、Q兩點(diǎn)從出發(fā)開始到幾秒時(shí)?點(diǎn)P和點(diǎn)Q的距離是10cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,∠B90°,連接AC,∠DAC=∠BAC

1)求證:ADDC;

2)若∠D120°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】倡導(dǎo)健康生活推進(jìn)全民健身,某社區(qū)去年購進(jìn)A,B兩種健身器材若干件,經(jīng)了解,B種健身器材的單價(jià)是A種健身器材的15倍,用7200元購買A種健身器材比用5400元購買B種健身器材多10件.

1A,B兩種健身器材的單價(jià)分別是多少元?

2)若今年兩種健身器材的單價(jià)和去年保持不變,該社區(qū)計(jì)劃再購進(jìn)A,B兩種健身器材共50件,且費(fèi)用不超過21000元,請問:A種健身器材至少要購買多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=的圖象經(jīng)過點(diǎn)P(4,3)和點(diǎn)B(m,n)(其中0<m<4),作BAx軸于點(diǎn)A,連接PA,PB,OB,已知SAOB=SPAB

(1)求k的值和點(diǎn)B的坐標(biāo).

(2)求直線BP的解析式.

(3)直接寫出在第一象限內(nèi),使反比例函數(shù)大于一次函數(shù)的x的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線y=x﹣3與x軸、y軸分別交于點(diǎn)A、B,拋物線y=x2+bx+c經(jīng)過點(diǎn)A、B,且交x軸于點(diǎn)C.

(1)求拋物線的解析式;

(2)點(diǎn)P為拋物線上一點(diǎn),且點(diǎn)P在AB的下方,設(shè)點(diǎn)P的橫坐標(biāo)為m.

試求當(dāng)m為何值時(shí),PAB的面積最大;

當(dāng)PAB的面積最大時(shí),過點(diǎn)P作x軸的垂線PD,垂足為點(diǎn)D,問在直線PD上否存在點(diǎn)Q,使QBC為直角三角形?若存在,直接寫出符合條件的Q的坐標(biāo)若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為∠ABC的邊上的一點(diǎn),過點(diǎn)OOMAB于點(diǎn),到點(diǎn)的距離等于線段OM的長的所有點(diǎn)組成圖形.圖形W與射線交于E,F兩點(diǎn)(點(diǎn)在點(diǎn)F的左側(cè)).

1)過點(diǎn)于點(diǎn),如果BE=2,,求MH的長;

2)將射線BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到射線BD,使得∠,判斷射線BD與圖形公共點(diǎn)的個(gè)數(shù),并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)A在第一象限,軸于B點(diǎn),連結(jié),將折疊,使點(diǎn)落在x軸上,折痕交邊于D點(diǎn),交斜邊E點(diǎn),(1)若A點(diǎn)的坐標(biāo)為,當(dāng)時(shí),點(diǎn)的坐標(biāo)是______;(2)若與原點(diǎn)O重合,,雙曲線的圖象恰好經(jīng)過DE兩點(diǎn)(如圖2),則____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺乙種品牌空調(diào)的進(jìn)價(jià)比每臺甲種品牌空調(diào)的進(jìn)價(jià)高20%,用7200元購進(jìn)的乙種品牌空調(diào)數(shù)量比用3000元購進(jìn)的甲種品牌空調(diào)數(shù)量多2臺.

(1)求甲、乙兩種品牌空調(diào)的進(jìn)貨價(jià);

(2)該商場擬用不超過16000元購進(jìn)甲、乙兩種品牌空調(diào)共10臺進(jìn)行銷售,其中甲種品牌空調(diào)的售價(jià)為2500元/臺,乙種品牌空調(diào)的售價(jià)為3500元/臺.請您幫該商場設(shè)計(jì)一種進(jìn)貨方案,使得在售完這10臺空調(diào)后獲利最大,并求出最大利潤.

查看答案和解析>>

同步練習(xí)冊答案