【題目】如圖,點(diǎn)O為∠ABC的邊上的一點(diǎn),過點(diǎn)O作OM⊥AB于點(diǎn),到點(diǎn)的距離等于線段OM的長的所有點(diǎn)組成圖形.圖形W與射線交于E,F兩點(diǎn)(點(diǎn)在點(diǎn)F的左側(cè)).
(1)過點(diǎn)作于點(diǎn),如果BE=2,,求MH的長;
(2)將射線BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到射線BD,使得∠,判斷射線BD與圖形公共點(diǎn)的個(gè)數(shù),并證明.
【答案】(1)MH=;(2)1個(gè).
【解析】
(1)先根據(jù)題意補(bǔ)全圖形,然后利用銳角三角函數(shù)求出圓的半徑即OM的長度,再利用勾股定理求出BM的長度,最后利用可求出MH的長度.
(2)過點(diǎn)O作⊥于點(diǎn),通過等量代換可知∠∠,從而利用角平分線的性質(zhì)可知,得出為⊙的切線,從而可確定公共點(diǎn)的個(gè)數(shù).
解:(1)∵到點(diǎn)的距離等于線段的長的所有點(diǎn)組成圖形,
∴圖形是以為圓心,的長為半徑的圓.
根據(jù)題意補(bǔ)全圖形:
∵于點(diǎn)M,
∴∠.
在△中,
,
∴.
∵
∴,
解得:.
∴
在△中,
,
∴.
∵
∴
∴.
(2) 解: 1個(gè).
證明:過點(diǎn)O作⊥于點(diǎn),
∵∠∠,
且∠∠,
∴ ∠∠.
∴.
∴為⊙的切線.
∴射線與圖形的公共點(diǎn)個(gè)數(shù)為1個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在邊BC上,BD=6,CD=2,點(diǎn)P是邊AB上一點(diǎn),則PC+PD的最小值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=-x2+4x-6.
(1)直接寫出拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo);
(2)設(shè)二次函數(shù)的對(duì)稱軸與x軸交于點(diǎn)C,連接BA,BC,求△ABC的面積;
(3)若拋物線的頂點(diǎn)為D,在y軸上是否存在一點(diǎn)P,使得△PAD的周長最?若存在,求出△PAD的周長;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,且AB=6,點(diǎn)M為⊙O外一點(diǎn),且MA,MC分別切⊙O于點(diǎn)A、C.點(diǎn)D是兩條線段BC與AM延長線的交點(diǎn).
(1)求證:DM=AM;
(2)直接回答:
①當(dāng)CM為何值時(shí),四邊形AOCM是正方形?
②當(dāng)CM為何值時(shí),△CDM為等邊三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD 中,AD=6,點(diǎn) E 是對(duì)角線 AC 上一點(diǎn),連接 DE,過點(diǎn) E 作 EF⊥ ED,交 AB 于點(diǎn) F,連接 DF,交 AC 于點(diǎn) G,將△EFG 沿 EF 翻折,得到△EFM,連接DM,交 EF 于點(diǎn) N,若點(diǎn) F 是 AB 邊的中點(diǎn),則 △EDM 的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)(﹣3,2).
(1)求它的解析式;
(2)在直角坐標(biāo)中畫出該反比例函數(shù)的圖象;
(3)若﹣3<x<﹣2,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不動(dòng),△ADE繞點(diǎn)A旋轉(zhuǎn),連接BE,CD,F(xiàn)為BE的中點(diǎn),連接AF.
(1)如圖①,當(dāng)∠BAE=90°時(shí),求證:CD=2AF;
(2)當(dāng)∠BAE≠90°時(shí),(1)的結(jié)論是否成立?請(qǐng)結(jié)合圖②說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是圓O直徑CA延長線上的一點(diǎn),PB切圓O于點(diǎn)B,點(diǎn)D是圓上的一點(diǎn),連接AB,AD,BD,CD,∠P=30°.
(1)求證:PB=BC;
(2)若AD=6,tan∠DCA=,求BD的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com