【題目】如圖,在菱形ABOC中,∠A=60°,它的一個(gè)頂點(diǎn)C在反比例函數(shù)y= 的圖象上,若將菱形向下平移2個(gè)單位,點(diǎn)A恰好落在函數(shù)圖象上,則反比例函數(shù)解析式為( )

A.y=﹣
B.y=﹣
C.y=﹣
D.y=

【答案】A
【解析】解:過點(diǎn)C作CD⊥x軸于D,

設(shè)菱形的邊長為a,
在Rt△CDO中,OD=acos60°= a,CD=asin60°= a,
則C(﹣ a, a),
點(diǎn)A向下平移2個(gè)單位的點(diǎn)為(﹣ a﹣a, a﹣2),即(﹣ a, a﹣2),
,
解得
故反比例函數(shù)解析式為y=﹣
故選:A.
【考點(diǎn)精析】利用反比例函數(shù)的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減小; 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)如圖,直線l1的解析表達(dá)式為:,且l1x

交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A,B,直線l1,l2交于點(diǎn)C

1】(1)求直線l2的函數(shù)關(guān)系式;

2】(2)求ADC的面積;

3】(3)若點(diǎn)H為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)H,使以A、D、CH為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)H的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C、D是線段AB上兩點(diǎn),已知AC:CD:DB=1:2:3,M、N分別為AC、DB的中點(diǎn),且AB=12cm,

(1)求線段CD的長;

(2)求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某修理廠需要購進(jìn)甲、乙兩種配件,經(jīng)調(diào)查,每個(gè)甲種配件的價(jià)格比每個(gè)乙種配件的價(jià)格少0.4萬元,且用16萬元購買的甲種配件的數(shù)量與用24萬元購買的乙種配件的數(shù)量相同

(1)求每個(gè)甲種配件、每個(gè)乙種配件的價(jià)格分別為多少萬元;

(2)現(xiàn)投入資金80萬元,根據(jù)維修需要預(yù)測,甲種配件要比乙種配件至少要多22件,問乙種配件最多可購買多少件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,某住宅小區(qū)在施工過程中留下了一塊空地,已知AD=4米,CD=3米,ADC=90°,AB=13米,BC=12米,小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問用該草坪鋪滿這塊空地共需花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

1)填空:點(diǎn)B在數(shù)軸上表示的數(shù)是 ,點(diǎn)C在數(shù)軸上表示的數(shù)是 ;

2)若線段CD以每秒3個(gè)單位的速度向右勻速運(yùn)動(dòng),當(dāng)點(diǎn)D運(yùn)動(dòng)到A時(shí),線段CD與線段AB開始有重疊部分,此時(shí)線段CD運(yùn)動(dòng)了 秒;

3)在(2)的條件下,線段CD繼續(xù)向右運(yùn)動(dòng),問再經(jīng)過 秒后,線段CD與線段AB不再有重疊部分;

4)若線段AB、CD同時(shí)從圖中位置出發(fā),線段AB以每秒2個(gè)單位的速度向左勻速運(yùn)動(dòng),線段CD仍以每秒3個(gè)單位的速度向右勻速運(yùn)動(dòng),點(diǎn)P是線段CD的中點(diǎn),問運(yùn)動(dòng)幾秒時(shí),點(diǎn)P與線段AB兩端點(diǎn)(AB)的距離為1個(gè)單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列火車勻速行駛,經(jīng)過一條長300米的隧道需要20秒的時(shí)間.隧道的頂上有一盞燈,垂直向下發(fā)光,燈光照在火車上的時(shí)間是10秒.求這列火車的長度.

小冉根據(jù)學(xué)習(xí)解決應(yīng)用問題的經(jīng)驗(yàn)對上面問題進(jìn)行了探究,下面是小冉的探究過程,請補(bǔ)充完成:

設(shè)這列火車的長度是x米,那么

(1)從車頭經(jīng)過燈下到車尾經(jīng)過燈下,火車所走的路程是   米,這段時(shí)間內(nèi)火車的平均速度是   米/秒;

(2)從車頭進(jìn)入隧道到車尾離開隧道,火車所走的路程是   米,這段時(shí)間內(nèi)火車的平均速度是   米/秒;

(3)火車經(jīng)過燈下和火車通過隧道的平均速度的關(guān)系是   ;

(4)由此可以列出方程并求解出這列火車的長度(請列方程求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,DE、DF是ABC的中位線,連接EF、AD,其交點(diǎn)為O求證:

(1)CDE≌△DBF;

(2)OA=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師為了了解學(xué)生暑期在家的閱讀情況,隨機(jī)調(diào)查了20名學(xué)生某一天的閱讀小時(shí)數(shù),具體情況統(tǒng)計(jì)如下:

閱讀時(shí)間
(小時(shí))

2

2.5

3

3.5

4

學(xué)生人數(shù)(名)

1

2

8

6

3

則關(guān)于這20名學(xué)生閱讀小時(shí)數(shù)的說法正確的是(
A.眾數(shù)是8
B.中位數(shù)是3
C.平均數(shù)是3
D.方差是0.34

查看答案和解析>>

同步練習(xí)冊答案