【題目】某市政府于2017年初投資了112萬元,建成40個公共自行車站點、配置720輛公共自行車正式啟用公共自行車租貸系統(tǒng):今后將逐年增加投資,用于建設新站點、配置公共自行車.預計2019年將投資340.5萬元,新建120個公共自行車站點、配置2205輛公共自行車.
(1)每個站點的造價和公共自行車的單價分別是多少萬元?
(2)若2017年到2019年市政府配置公共自行車數量的年平均增長率相同,請你求出2018年市政府配置公共自行車的數量.
【答案】(1) 每個站點造價為1萬元,自行車單價為0.1萬元;(2) 1260輛.
【解析】
(1)設每個站點造價x萬元,每輛自行車售價為y萬元,根據等量關系:40個站點的建造費用+720輛自行車的購置費用=112萬元;120個站點的建造費用+2205輛自行車的購置費用=340.5萬元列出方程組,解方程組即可求得所求答案;
(2)設2017到2019年配置自行車的增長率為a,則由題意可得2019年自行車的配置數量為720(1+a)2輛,這樣結合2019年自行車的配置數量為2205輛,即可列出一元二次方程,解方程求得a的值,即可求出2018年配置自行車的數量了.
解:(1)設每個站點造價x萬元,自行車單價為y萬元.根據題意可得:
,
解得:
答:每個站點造價為1萬元,自行車單價為0.1萬元.
(2)設2017年到2019年市政府配置公共自行車數量的年平均增長率為a.
根據題意可得:720(1+a)2=2205,
解此方程:(1+a)2=,
即:,(不符合題意,舍去),
∴2018年自行車的配置數量為:(輛),
答:2018年市政府配置公共自行車的數量為1260輛.
科目:初中數學 來源: 題型:
【題目】如圖,已知點A(6,0),B(8,5),將線段OA平移至CB,點D(x,0)在x軸正半軸上(不與點A重合),連接OC,AB,CD,BD.
(1)求對角線AC的長;
(2)△ODC與△ABD的面積分別記為S1,S2,設S=S1﹣S2,求S關于x的函數解析式,并探究是否存在點D使S與△DBC的面積相等,如果存在,請求出x的值(或取值范圍);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側面和2個正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)
A方法:剪6個側面; B方法:剪4個側面和5個底面。
現(xiàn)有19張硬紙板,裁剪時張用A方法,其余用B方法。
(1)用的代數式分別表示裁剪出的側面和底面的個數;
(2)若裁剪出的側面和底面恰好全部用完,問能做多少個盒子?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖所示.
(1)作出△ABC關于y軸對稱的△A′B′C′,并寫出△A′B′C′三個頂點的坐標.
(2)在x軸上畫出點P,使PA+PC最小,寫出作法.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程
(1)若方程有兩個相等的實數根,求m的值,并求出此時方程的根;
(2)是否存在正數m,使方程的兩個實數根的平方和等于224.若存在,求出滿足條件的m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC在直角坐標系中.
(1)寫出點A,點B的坐標A( , ),B( , );
(2)S△ABC= ;
(3)若把△ABC向上平移2個單位,再向右平移2個單位得△A1B1C1,在圖中畫出△A1B1C1的位置,并寫出點A1、B1、C1的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知A(0,a)、B(b, 0),且a、b滿足: ,點D為x正半軸上一動點
(1)求A、B兩點的坐標
(2)如圖,∠ADO的平分線交y軸于點C,點 F為線段OD上一動點,過點F作CD的平行線交y軸于點H,且∠AFH=45°, 判斷線段AH、FD、AD三者的數量關系,并予以證明
(3)以AO為腰,A為頂角頂點作等腰△ADO,若∠DBA=30°,直接寫出∠DAO的度數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:點B、F、C、E在一條直線上,F(xiàn)B=CE,AC=DF.能否由上面的已知條件證明AB∥ED?如果能,請給出證明;如果不能,請從下列三個條件中選擇一個合適的條件,添加到已知條件中,使AB∥ED成立,并給出證明.
供選擇的三個條件(請從其中選擇一個):
①AB=ED;
②BC=EF;
③∠ACB=∠DFE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學課上,李老師準備了四張背面看上去無差別的卡片A,B,C,D,每張卡片的正面標有字母a,b,c表示三條線段(如圖),把四張卡片背面朝上放在桌面上,李老師從這四張卡片中隨機抽取一張卡片后不放回,再隨機抽取一張.
(1)用樹狀圖或者列表表示所有可能出現(xiàn)的結果;
(2)求抽取的兩張卡片中每張卡片上的三條線段都能組成三角形的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com