【題目】如圖,在△ABC中,∠B=60°,過點C作CD∥AB,若∠ACD=60°,求證:△ABC是等邊三角形.
【答案】見解析.
【解析】
證法一:根據(jù)平行線的性質可知,∠A=60°,所以∠ACB=60°,即可證明△ABC是等邊三角形.
證法二:根據(jù)平行線的性質可知,∠B=60°,所以∠BCD=120°,∠ACB=60°,即可證明△ABC是等邊三角形.
證明:
證法一: ∵ CD∥AB,
∴ ∠A=∠ACD=60°.
∵ ∠B=60°,
在△ABC中,
∠ACB=180°-∠A-∠B=60°.
∴ ∠A=∠B=∠ACB.
∴ △ABC是等邊三角形.
證法二: ∵ CD∥AB,
∴ ∠B+∠BCD=180°.
∵ ∠B=60°,
∴ ∠BCD=120°.
∴ ∠ACB=∠BCD-∠ACB=60°.
在△ABC中,
∠A=180°-∠B-∠ACB=60°.
∴ ∠A=∠B=∠ACB.
∴ △ABC是等邊三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),AB=CD,AD=BC,O為AC中點,過O點的直線分別與AD、BC相交于點M、N,那么∠1與∠2有什么關系?請說明理由;
若過O點的直線旋轉至圖(2)、(3)的情況,其余條件不變,那么圖(1)中的∠1與∠2的關系成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校組織了“熱愛憲法,捍衛(wèi)憲法”的知識競賽,賽后發(fā)現(xiàn)所有學生的成績(總分100分)均不低于50分,為了解本次競賽的成績分布情況,隨機抽取若干名學生的成績作為樣本進行整理,并繪制了不完整的統(tǒng)計圖表,請你根據(jù)統(tǒng)計圖表解答下列問題.
學校若干名學生成績分布統(tǒng)計表
分數(shù)段(成績?yōu)?/span>x分) | 頻數(shù) | 頻率 |
50≤x<60 | 16 | 0.08 |
60≤x<70 | a | 0.31 |
70≤x<80 | 72 | 0.36 |
80≤x<90 | c | d |
90≤x≤100 | 12 | b |
(1)此次抽樣調查的樣本容量是 ;
(2)寫出表中的a= ,b= ,c= ;
(3)補全學生成績分布直方圖;
(4)比賽按照分數(shù)由高到低共設置一、二、三等獎,若有25%的參賽學生能獲得一等獎,則一等獎的分數(shù)線是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一般地,任何一個無限循環(huán)小數(shù)都可以寫成分數(shù)形式,現(xiàn)以無限循環(huán)小數(shù)0.為例進行討論:設0.=x,由0.=0.777…可知,10x﹣x=7.﹣0.=7,即10x﹣x=7.解方程,得x=.于是,得0. = .則0.=____________;0.=____________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,O為坐標原點,點A(﹣4,0),直線l∥x軸,交y軸于點C(0,3),點B(﹣4,3)在直線l上,將矩形OABC繞點O按順時針方向旋轉α度,得到矩形OA′B′C′,此時直線OA′、B′C′分別與直線l相交于點P、Q.
(1)當α=90°時,點B′的坐標為 .
(2)如圖2,當點A′落在l上時,點P的坐標為 ;
(3)如圖3,當矩形OA′B′C′的頂點B′落在l上時.
①求OP的長度;②S△OPB′的值是 .
(4)在矩形OABC旋轉的過程中(旋轉角0°<α≤180°),以O,P,B′,Q為頂點的四邊形能否成為平行四邊形?如果能,請直接寫出點B′和點P的坐標;如果不能,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩運動員在長為的直道(,為直道兩端點)上進行勻速往返跑訓練,兩人同時分別從點,點起跑,甲從點起跑,到達點后,立即轉身跑向點,到達點后,又立即轉身跑向點…乙從點起跑,到達點后,立即轉身跑向點,到達點后,又立即轉身跑向點…若甲跑步的速度為,乙跑步的速度為,則起跑后內(nèi),兩人相遇的次數(shù)為( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一塊材料的形狀是銳角三角形ABC,邊BC=12cm,高AD=8cm,把它加工成矩形零件如圖,要使矩形的一邊在BC上,其余兩個頂點分別在AB,AC上.且矩形的長與寬的比為3:2,求這個矩形零件的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(7分)小軍同學在學校組織的社會調查活動中負責了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
(1)請根據(jù)題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;
(2)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶?
(3)從月均用水量在2≤x<3,8≤x<9這兩個范圍內(nèi)的樣本家庭中任意抽取2個,求抽取出的2個家庭來自不同范圍的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,AC與BD交于點O,E為CD延長線上的一點,且CD=DE,連接BE分別交AC、AD于點F、G,連接OG,則下列結論中一定成立的是( )
①OG=AB;②與△EGD全等的三角形共有5個;③S四邊形ODGF>S△ABF;④由點A、B、D、E構成的四邊形是菱形.
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com