【題目】如圖,在下列6×6的網(wǎng)格中,橫、縱坐標(biāo)均A0,3),B5,3)、C1,5)都是格點(diǎn)在網(wǎng)格中僅用無刻度的直尺作圖,保留作圖痕跡.

1)畫出以AB為斜邊的等腰RtABDDAB下方);

2)連接CDAB于點(diǎn)E,則∠ACE的度數(shù)為   ;

3)在直線AB下方找一個(gè)格點(diǎn)F,連接CF,使∠ACF=∠AEC,直接寫出F點(diǎn)坐標(biāo)   

4)由上述作圖直接寫出tanAEC的值   

【答案】1)見解析;(2)∠ACE45°;(3)(6,0);(43

【解析】

1)取格點(diǎn)MN,連接AMBN交于點(diǎn)D,點(diǎn)D即為所求.

2)利用四點(diǎn)共圓的性質(zhì)解決問題即可.

3)取格點(diǎn)G,作直線CG可得點(diǎn)F

4)在RtACF中,求出AFAC即可解決問題.

1ABD即為所求.

2)∠ACE45°

理由:∵∠ACB+ADB180°,

A,C,B,D四點(diǎn)共圓,

DADB,

,

∴∠ACD=∠BCD45°

故答案為45°

3)點(diǎn)F即為所求.F6,0).

理由:ACE,∠ACG中,

∵∠CAE=∠CAG,∠ACE=∠AGC45°

∴∠AEC=∠ACG,

即∠ACF=∠AEC

故答案為(6,0).

4)在RtACF中,tanACF3,

∵∠ACF=∠AEC

tanAEC3

故答案為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,C,B三地依次在一條筆直的道路上甲、乙兩車同時(shí)分別從AB兩地出發(fā),相向而行.甲車從A地行駛到B地就停止,乙車從B地行駛到A地后,立即以相同的速度返回B地,在整個(gè)行駛的過程中,甲、乙兩車均保持勻速行駛,甲、乙兩車距C地的距離之和ykm)與甲車出發(fā)的間(b)之間的函數(shù)關(guān)系如圖所示,則甲車到達(dá)B地時(shí),乙車距B地的距離為_____km

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A、BC三地順次在同一直線上,AC兩地相距1400千米,甲乙兩車均從A地出發(fā),向B地方向勻速前進(jìn),甲車出發(fā)5小時(shí)后,乙車出發(fā),經(jīng)過一段時(shí)間后兩車在B地相遇,甲車到達(dá)B地后便在B地卸貨,卸完貨后從B地按原車速的返回A地,而乙車到B地后立刻繼續(xù)以原速前往C地,到達(dá)C地后按原車速的原路返回A地,結(jié)果甲乙兩車同時(shí)返回A地,若兩車間的距離y(千米)與甲車出發(fā)時(shí)間x(小時(shí))之間的關(guān)系如圖所示,則甲車在B地卸貨用了_____小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:四邊形 ABCD 內(nèi)接于⊙O,連接 AC、BD,∠BAD+2ACB=180°

1)如圖 1,求證:點(diǎn) A 為弧 BD 的中點(diǎn);

2)如圖 2,點(diǎn) E 為弦 BD 上一點(diǎn),延長 BA 至點(diǎn) F,使得 AF=AB,連接 FE AD 于點(diǎn) P,過點(diǎn) P PHAF 于點(diǎn) H,AF=2AH+AP,求證:AH:AB=PE:BE;

3)在(2)的條件下,如圖 3,連接 AE,并延長 AE 交⊙O 于點(diǎn) M,連接 CM,并延長 CM AD 的延長線于點(diǎn) N,連接 FD,∠MND=MED,DF=12sinACB,MN=,求 AH 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與雙曲線的一個(gè)交點(diǎn)是

1)求的值;

2)設(shè)點(diǎn)是雙曲線上一點(diǎn),直線軸交于點(diǎn).若,結(jié)合圖象,直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長為半徑作,交射線OB于點(diǎn)D,連接CD

2)分別以點(diǎn)C,D為圓心,CD長為半徑作弧,交于點(diǎn)M,N

3)連接OM,MN

根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,以為直徑作半圓,半徑繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,點(diǎn)的對應(yīng)點(diǎn)為,當(dāng)點(diǎn)與點(diǎn)重合時(shí)停止.連接并延長到點(diǎn),使得,過點(diǎn)于點(diǎn),連接,

1______

2)如圖,當(dāng)點(diǎn)與點(diǎn)重合時(shí),判斷的形狀,并說明理由;

3)如圖,當(dāng)時(shí),求的長;

4)如圖,若點(diǎn)是線段上一點(diǎn),連接,當(dāng)與半圓相切時(shí),直接寫出直線的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC6,EBC的中點(diǎn),連接AE,P是邊AD上一動點(diǎn),沿過點(diǎn)P的直線將矩形折疊,使點(diǎn)D落在AE上的點(diǎn)D′處,當(dāng)△APD′是直角三角形時(shí),PD_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,關(guān)于x的二次函數(shù)yax22axa0)的頂點(diǎn)為C,與x軸交于點(diǎn)O、A,關(guān)于x的一次函數(shù)y=﹣axa0).

1)試說明點(diǎn)C在一次函數(shù)的圖象上;

2)若兩個(gè)點(diǎn)(ky1)、(k+2,y2)(k≠0,±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿足?如果存在,請求出k的值;如果不存在,請說明理由;

3)若點(diǎn)E是二次函數(shù)圖象上一動點(diǎn),E點(diǎn)的橫坐標(biāo)是n,且﹣1≤n≤1,過點(diǎn)Ey軸的平行線,與一次函數(shù)圖象交于點(diǎn)F,當(dāng)0a≤2時(shí),求線段EF的最大值.

查看答案和解析>>

同步練習(xí)冊答案