【題目】如圖所示是某公園為迎接“中國–南亞博覽會”設(shè)置的一休閑區(qū).,弧的半徑長是米,是的中點(diǎn),點(diǎn)在弧上,,則圖中休閑區(qū)(陰影部分)的面積是( )
A. 米 B. 米 C. 米 D. 米
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工藝美術(shù)中,常需設(shè)計(jì)對稱圖案.在如圖的正方形網(wǎng)格中,點(diǎn),的坐標(biāo)分別為,.請?jiān)趫D中再找一個格點(diǎn),使它與已知的個格點(diǎn)組成軸對稱圖形,則點(diǎn)的坐標(biāo)為________(如果滿足條件的點(diǎn)不止一個,請將它們的坐標(biāo)都寫出來).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),B(0,b),且|a+4|+b2﹣86+16=0.
(1)求a,b的值;
(2)如圖1,c為y軸負(fù)半軸上一點(diǎn),連CA,過點(diǎn)C作CD⊥CA,使CD=CA,連BD.求證:∠CBD=45°;
(3)如圖2,若有一等腰Rt△BMN,∠BMN=90°,連AN,取AN中點(diǎn)P,連PM、PO.試探究PM和PO的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)α度,得到△A1BC1,A1B交AC于E,A1C1分別交AC、BC于點(diǎn)D、F,下列結(jié)論:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中一定正確的有
A. ①②④ B. ②③④ C. ①②⑤ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線,與和分別相切于點(diǎn)和點(diǎn).點(diǎn)和點(diǎn)分別是和上的動點(diǎn),沿和平移.的半徑為,.下列結(jié)論錯誤的是( )
A. B. 若與相切,則
C. 若,則與相切 D. 和的距離為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:一個自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱它為“下滑數(shù)”(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個,恰好是“下滑數(shù)”的概率為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D、E、F分別為BC、AD、BE的中點(diǎn),若△BFD的面積為6,則 △ABC的面積等于_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,.動點(diǎn),分別從點(diǎn),同時(shí)開始移動,點(diǎn)的速度為秒,點(diǎn)的速度為秒,點(diǎn)移動到點(diǎn)后停止,點(diǎn)也隨之停止運(yùn)動.下列時(shí)間瞬間中,能使的面積為的是( )
A. 2秒鐘 B. 3秒鐘 C. 4秒鐘 D. 5秒鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰直角△ABC,△MAD中,∠BAC=∠DMA=90°,連接BM,CD.且B,M,D三點(diǎn)共線
(1)當(dāng)點(diǎn)D,點(diǎn)M在BC邊下方,CD<BD時(shí),如圖①,求證:BM+CD=AM;(提示:延長DB到點(diǎn)N,使MN=MD,連接AN.)
(2)當(dāng)點(diǎn)D在AC邊右側(cè),點(diǎn)M在△ABC內(nèi)部時(shí),如圖②;當(dāng)點(diǎn)D在AB邊左側(cè),點(diǎn)M在△ABC外部時(shí),如圖③,請直接寫出線段BM,CD,AM之間的數(shù)量關(guān)系,不需要證明;
(3)在(1),(2)條件下,點(diǎn)E是AB中點(diǎn),MF是△AMD的角平分線,連接EF,若EF=2MF=6,則CD= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com