【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點三角形(頂點是網(wǎng)格線交點的三角形)的頂點的坐標(biāo)分別是

(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;

(2)請畫出關(guān)于軸對稱的;

(3)請在軸上求作一點,使的周長最小,并寫出點的坐標(biāo).

【答案】(1)(2)見解析;(3)P(0,2).

【解析】分析:(1)根據(jù)A,C兩點的坐標(biāo)即可建立平面直角坐標(biāo)系.

(2)分別作各點關(guān)于x軸的對稱點,依次連接即可.

(3)作點C關(guān)于y軸的對稱點C′,連接B1C′y軸于點P,即為所求.

詳解:(1)(2)如圖所示:

(3)作點C關(guān)于y軸的對稱點C′,連接B1C′交y軸于點P,則點P即為所求.

設(shè)直線B1C′的解析式為y=kx+b(k≠0),

∵B1(﹣2,-2),C′(1,4),

,解得:,

∴直線AB2的解析式為:y=2x+2,

∴當(dāng)x=0時,y=2,∴P(0,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,已知AB=AC,DAC上的一點,CD=9BC=15,BD=12

1)判斷BCD的形狀并證明你的結(jié)論.

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)學(xué)校組織學(xué)生參加綜合實踐活動,他們參與了某種品牌運動鞋的銷售工作,已知該運動鞋每雙的進(jìn)價為120元,為尋求合適的銷售價格進(jìn)行了4天的試銷,試銷情況如下表所示:

第1天

第2天

第3天

第4天

售價x(元/雙)

150

200

250

300

銷售量y(雙)

40

30

24

20

(1)觀察表中數(shù)據(jù),x,y滿足什么函數(shù)關(guān)系?請求出這個函數(shù)關(guān)系式;

(2)若商場計劃每天的銷售利潤為3000元,則其單價定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BC6cm,點E從點D出發(fā)沿DA邊運動到點A,點F從點B出發(fā)沿BC邊向點C運動,點E的運動速度為2cm/s,點F的運動速度為lcm/s,它們同時出發(fā),設(shè)運動的時間為t秒,當(dāng)t為何值時,EFAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°AD平分∠BAC,DEABE,下列結(jié)論:①CD=ED;②AC+BE=AB;③∠BDE=BAC;④BE=DE;⑤SBDESACD=BDAC,其中正確的個數(shù)(

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A(10,0),以O(shè)A為直徑在第一象限內(nèi)作半圓C,點B是該半圓周上的一動點,連結(jié)OB、AB,并延長AB至點D,使DB=AB,過點D作x軸垂線,分別交x軸、直線OB于點E、F,點E為垂足,連結(jié)CF.

(1)當(dāng)∠AOB=30°時,求弧AB的長;

(2)當(dāng)DE=8時,求線段EF的長;

(3)在點B運動過程中,是否存在以點E、C、F為頂點的三角形與△AOB相似,若存在,請求出此時點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個關(guān)于是否成反比例的命題,判斷它們的真假.

(1)面積一定的等腰三角形的底邊長和底邊上的高成反比例;

(2)面積一定的菱形的兩條對角線長成反比例;

(3)面積一定的矩形的兩條對角線長成反比例;

(4)面積一定的直角三角形的兩直角邊長成比例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)一批單價為4/件的日用品。若按每件5元的價格出售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件;假定每月的銷售件數(shù)y(萬件)與價格x(元/件)之間滿足一次函數(shù)關(guān)系.

1試求yx的函數(shù)關(guān)系式;

2當(dāng)銷售價格定為多少時,才能使每月的利潤最大?每月的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠BAD60°

(1) 如圖1,點E為線段AB的中點,連接DE、CE.若AB4,求線段EC的長

(2) 如圖2M為線段AC上一點(不與A、C重合),以AM為邊向上構(gòu)造等邊三角形AMN,線段MNAD交于點G,連接NC、DM,Q為線段NC的中點,連接DQ、MQ,判斷DMDQ的數(shù)量關(guān)系,并證明你的結(jié)論

(3) (2)的條件下,若AC,請你直接寫出DMCN的最小值

查看答案和解析>>

同步練習(xí)冊答案