【題目】如圖,矩形ABCD中,對角線AC、BD相交于點G,E、F分別是邊AD、BC的中點,AB=2,BC=4,一動點P從點B出發(fā),沿著B﹣A﹣D﹣C的方向在矩形的邊上運動,運動到點C停止.點M為圖1中的某個定點,設點P運動的路程為x,△BPM的面積為y,表示y與x的函數(shù)關系的圖象大致如圖2所示.那么,點M的位置可能是圖1中的( 。
A. 點CB. 點EC. 點FD. 點G
科目:初中數(shù)學 來源: 題型:
【題目】小鵬學完解直角三角形知識后,給同桌小艷出了一道題:“如圖所示,把一張長方形卡片ABCD放在每格寬度都為6mm的橫格紙中,恰好四個頂點都在橫格線上,已知a=36°,求長方形卡片的周長.”請你幫小艷解答這道題.(精確到1mm)(參考數(shù)據(jù):sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BE是AB的延長線,指出下面各組中的兩個角是由哪兩條直線被哪一條直線所截形成的?它們是什么角?
(1)∠A和∠D;
(2)∠A和∠CBA;
(3)∠C和∠CBE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,動點P從點B出發(fā),沿矩形的邊由運動,設點P運動的路程為x,的面積為y,把y看作x的函數(shù),函數(shù)的圖像如圖2所示,則的面積為( )
A. 10 B. 16 C. 18 D. 20
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是弧EB的中點,則下列結論:
①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】同學們,在初一學習正多邊形和圓這節(jié)課時,我們就學習過四邊形的內角和等于360°.下面我們就在四邊形中來研究幾個問題:
(1)問題背景:
如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點,且∠EAF=60°,探究圖中線段BE、EF、FD之間的數(shù)量關系.
小王同學探究此問題的方法是,延長FD到點G,使DG=BE.連結AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結論,他的結論應是______;
(2)探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點,且∠EAF=∠BAD,上述結論是否仍成立,并說明理由;
(3)實際應用:
如圖3,在某次軍事演習中,艦艇甲在指揮中心(點O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以45海里/時的速度前進,同時,艦艇乙沿北偏西50°的方向以60海里/時的速度前進,2小時后,指揮中心觀察到甲、乙兩艦艇分別到達E、F處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點P、Q分別是等邊△ABC邊AB、BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ、CP交于點M.
(1)求證:△ABQ≌△CAP;
(2)當點P、Q分別在AB、BC邊上運動時,∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數(shù).
(3)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠QMC變化嗎?若變化,請說明理由;若不變,直接寫出它的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A,B兩地相距100千米,甲,乙兩人騎車同時分別從A、B兩地相向而行,假設他們都保持勻速行駛,直線l1,l2分別表示甲,乙兩人與A地的距離S(單位:km)與行駛時間t(單位:h)之間關系的圖象.
根據(jù)圖象提供的信息,解答下列問題:
(1)甲、乙兩人的速度分別是多少?
(2)經(jīng)過多長時間,兩人相遇?
(3)分別寫出甲,乙兩人與A地的距離S(單位:km)與行駛時間t(單位:h)之間的關系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com