附圖為正三角形ABC與正方形DEFG的重疊情形,其中D、E兩點分別在AB、BC上,且BD=BE.若AC=18,GF=6,則F點到AC的距離為何?( )

A.2
B.3
C.12-4
D.6-6
【答案】分析:過點B作BH⊥AC于H,交GF于K,根據(jù)等邊三角形的性質求出∠A=∠ABC=60°,然后判定△BDE是等邊三角形,再根據(jù)等邊三角形的性質求出∠BDE=60°,然后根據(jù)同位角相等,兩直線平行求出AC∥DE,再根據(jù)正方形的對邊平行得到DE∥GF,從而求出AC∥DE∥GF,再根據(jù)等邊三角形的邊的與高的關系表示出KH,然后根據(jù)平行線間的距離相等即可得解.
解答:解:如圖,過點B作BH⊥AC于H,交GF于K,
∵△ABC是等邊三角形,
∴∠A=∠ABC=60°,
∵BD=BE,
∴△BDE是等邊三角形,
∴∠BDE=60°,
∴∠A=∠BDE,
∴AC∥DE,
∵四邊形DEFG是正方形,GF=6,
∴DE∥GF,
∴AC∥DE∥GF,
∴KH=18×-6×-6=9-3-6=6-6,
∴F點到AC的距離為6-6.
故選D.
點評:本題考查了正方形的對邊平行,四條邊都相等的性質,等邊三角形的判定與性質,等邊三角形的高線等于邊長的倍,以及平行線間的距離相等的性質,綜合題,但難度不大,熟記各圖形的性質是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•臺灣)附圖為正三角形ABC與正方形DEFG的重疊情形,其中D、E兩點分別在AB、BC上,且BD=BE.若AC=18,GF=6,則F點到AC的距離為何?( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

附圖為正三角形ABC與正方形DEFG的重疊情形,其中D、E兩點分別在AB、BC上,且BD=BE.若AC=18,GF=6,則F點到AC的距離為何?


  1. A.
    2
  2. B.
    3
  3. C.
    12-4數(shù)學公式
  4. D.
    6數(shù)學公式-6

查看答案和解析>>

同步練習冊答案