【題目】畫出函數(shù)y2x+1的圖象,利用圖象求:

1)方程2x+10的根;

2)不等式2x+1≥0的解集;

3)當y≤3時,求x的取值范圍;

4)當﹣3≤y≤3時,求x的取值范圍.

【答案】1x=;(2x≥;(3x1;(42x1

【解析】

首先求出直線與坐標軸的交點坐標,經(jīng)過兩點畫直線.然后觀察圖象即可求得答案.

(1)方程2x+1=0的解是指直線與x軸的交點坐標;

(2)不等式2x+1≥0的解是指y≥0的部分;

(3) 當y≤3時, 找到對應的點,即可求得x的取值范圍;

(4)當﹣3≤y≤3時,找到對應的點,即可求得x的取值范圍.

解:當x=0時,y=1;當y=0時,x=,
∴直線過點 (0,1),(,0),
作函數(shù)y2x+1的圖象,

(1)由圖象得,方程2x+10的解為,x=;
(2)由圖象得,不等式2x+1≥0的解為,x≥;

(3) y=3時,由3=2x+1x=1,

∴由圖象得,當y≤3時,x的取值范圍為,x1,

(4)y=3時,由3=2x+1x=2;

y=3時,由3=2x+1x=1,

∴由圖象得,當﹣3≤y≤3時,x的取值范圍為,2x1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠BAC90°,E為邊BC上的點,且ABAE,D為線段BE的中點,過點EEFAE,過點AAFBC,且AF、EF相交于點F

1)求證:∠C=∠BAD;

2)求證:ACEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x+5的圖象與反比例函數(shù)y2=(k≠0)在第一象限的圖象交于A(1,n)和B兩點.

(1)求反比例函數(shù)的解析式;

(2)當y2>y1>0時,寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,D、E分別是AB、AC的中點,連接CD,過EEFDCBC的延長線于F.

(1)證明:四邊形CDEF是平行四邊形;

(2)若四邊形CDEF的周長是25cm,AC的長為5cm,求線段AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同一坐標系中,拋物線y=(x﹣a)2與直線y=a+ax的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化工材料經(jīng)銷公司購進一種化工原料若干千克,價格為每千克30元。物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元。經(jīng)市場調查發(fā)現(xiàn):日銷售量y(千克)是銷售單價x(元)的一次函數(shù),且當x=60時,y=80;x=50時,y=100。在銷售過程中,每天還要支付其他費用450元。

(1)求出y與x的函數(shù)關系式,并寫出自變量x的取值范圍。

(2)求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)關系式。

(3)當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半圓O與等腰直角三角形兩腰CA,CB分別切于D,E兩點,直徑FGAB上,若BG-1,則ABC的周長為(  )

A. 4+2 B. 6 C. 2+2 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場將進價為2000元的冰箱以2400元售出,平均毎天能售出8臺,為了配合國家家電下鄉(xiāng)政策的實施,商場決定采取適當?shù)慕祪r措施.調査表明:這種冰箱的售價毎降低50元,平均每天就能多售出4.

1)假設每臺冰箱降價元,商場每天銷售這種冰箱的利潤為元,請寫出間的函數(shù)表達式;(不要求寫出自變量的取值范圍)

2)商場要想在這種冰箱銷售中毎天盈利4800元,同時又要使百姓得到實惠,毎臺冰箱應降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙OBC于點D,過點DDE⊥AC,交AC于點E,AC的反向延長線交⊙O于點F.

(1)求證:DE⊙O的切線.

(2)若DE+EA=4,⊙O的半徑為5,求CF的長度.

查看答案和解析>>

同步練習冊答案