【題目】(2017遼寧省葫蘆島市)如圖,∠MAN=60°,AP平分∠MAN,點(diǎn)B是射線AP上一定點(diǎn),點(diǎn)C在直線AN上運(yùn)動(dòng),連接BC,將∠ABC(0°<ABC<120°)的兩邊射線BCBA分別繞點(diǎn)B順時(shí)針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線AM交于點(diǎn)D和點(diǎn)E

(1)如圖1,當(dāng)點(diǎn)C在射線AN上時(shí),①請(qǐng)判斷線段BCBD的數(shù)量關(guān)系,直接寫出結(jié)論;

②請(qǐng)?zhí)骄烤段AC,ADBE之間的數(shù)量關(guān)系,寫出結(jié)論并證明;

(2)如圖2,當(dāng)點(diǎn)C在射線AN的反向延長線上時(shí),BC交射線AM于點(diǎn)F,若AB=4,AC=,請(qǐng)直接寫出線段ADDF的長.

【答案】(1)BC=BDAD+AC=BE;(2)AD=,DF=

【解析】試題(1)①結(jié)論:BC=BD.只要證明△BGD≌△BHC即可.②結(jié)論:AD+AC=BE.只要證明AD+AC=2AG=2EG,再證明EB=BE即可解決問題;

(2)如圖2中,作BGAMGBHANH,AKCFK.由(1)可知,△ABG≌△ABH,△BGD≌△BHC,易知BH,AH,BC,CH, AD的長,由sin∠ACH=,推出AK的長,設(shè)FG=y,則AF=y,BF=,由△AFK∽△BFG,可得,可得關(guān)于y的方程,求出y即可解決問題.

試題解析:(1)①結(jié)論:BC=BD,

理由:如圖1中,作BGAMG,BHANH,

∵∠MAN=60°,PA平分∠MAN,BGAMG,BHANH,∴BG=BH,∠GBH=∠CBD=120°,∴∠CBH=∠GBD,∵∠BGD=∠BHC=90°,∴△BGD≌△BHC,∴BD=BC;

②結(jié)論:AD+AC=BE

∵∠ABE=120°,∠BAE=30°,∴∠BEA=∠BAE=30°,∴BA=BE,∵BGAE,∴AG=GE,EG=BEcos30°=BE,∵△BGD≌△BHC,∴DG=CH,∵AB=AB,BG=BH,∴Rt△ABG≌Rt△ABH,∴AG=AH,∴AD+AC=AG+DG+AHCH=2AG=BE,∴AD+AC=BE;

(2)如圖2中,作BGAMG,BHANH,AKCFK

由(1)可知,△ABG≌△ABH,△BGD≌△BHC,

易知BH=GB=2,AH=AG=EG=,BC=BD= =,CH=DG=,

AD=,∵sin∠ACH=,∴,∴AK=,

設(shè)FG=y,則AF=y,BF=,

∵∠AFK=∠BFG,∠AKF=∠BGF=90°,

∴△AFK∽△BFG,∴,∴,解得y=(舍棄),

DF=GF+DG=,即DF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】母親節(jié)前夕,我市某校學(xué)生積極參與關(guān)愛貧困母親的活動(dòng),他們購進(jìn)一批單價(jià)為20元的孝文化衫在課余時(shí)間進(jìn)行義賣,要求每件銷售價(jià)格不得高于27元,并將所得利潤捐給貧困母親。經(jīng)試驗(yàn)發(fā)現(xiàn),若每件按22元的價(jià)格銷售時(shí),每天能賣出42件;若每件按25元的價(jià)格銷售時(shí),每天能賣出33件.假定每天銷售件數(shù)y(件)與銷售價(jià)格x(元/件)滿足一個(gè)以x為自變量的一次函數(shù).

1)求yx滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);

2)在不積壓且不考慮其他因素的情況下,銷售價(jià)格定為多少元時(shí),才能使每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2x+x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn).

(1)如圖1,連接CD,求線段CD的長;

(2)如圖2,點(diǎn)P是直線AC上方拋物線上一點(diǎn),PFx軸于點(diǎn)F,PF與線段AC交于點(diǎn)E;將線段OB沿x軸左右平移,線段OB的對(duì)應(yīng)線段是O1B1,當(dāng)PE+EC的值最大時(shí),求四邊形PO1B1C周長的最小值,并求出對(duì)應(yīng)的點(diǎn)O1的坐標(biāo);

(3)如圖3,點(diǎn)H是線段AB的中點(diǎn),連接CH,將△OBC沿直線CH翻折至△O2B2C的位置,再將△O2B2C繞點(diǎn)B2旋轉(zhuǎn)一周在旋轉(zhuǎn)過程中,點(diǎn)O2,C的對(duì)應(yīng)點(diǎn)分別是點(diǎn)O3,C1,直線O3C1分別與直線AC,x軸交于點(diǎn)M,N.那么,在△O2B2C的整個(gè)旋轉(zhuǎn)過程中,是否存在恰當(dāng)?shù)奈恢,使?/span>AMN是以MN為腰的等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的線段O2M的長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機(jī)小李某天上午營運(yùn)時(shí)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>)如下:

,,,,,

問:(1)將最后一位乘客送到目的地時(shí),小李在什么位置?

2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?

3)若出租車起步價(jià)為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在RtABC中,∠ACB=90°,AE平分∠BACBC于點(diǎn)E,DAC上的點(diǎn),BE=DE

1)求證:∠B+EDA=180°;

2)求 的值。.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我省某工藝廠為全運(yùn)會(huì)設(shè)計(jì)了一款成本為每件20元得工藝品,投放市場(chǎng)進(jìn)行試銷后發(fā)現(xiàn)每天的銷售量y(件)是售價(jià)x(元∕件)的一次函數(shù),當(dāng)售價(jià)為22元∕件時(shí),每天銷售量為780件;當(dāng)售價(jià)為25元∕件時(shí),每天的銷售量為750件.

(1)求y與x的函數(shù)關(guān)系式;

(2)如果該工藝品售價(jià)最高不能超過每件30元,那么售價(jià)定為每件多少元時(shí),工藝廠銷售該工藝品每天獲得的利潤最大?最大利潤是多少元?(利潤=售價(jià)﹣成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是

A.袋中有形狀、大小、質(zhì)地完全一樣的5個(gè)紅球和1個(gè)白球,從中隨機(jī)抽出一個(gè)球,一定是紅球

B.天氣預(yù)報(bào)“明天降水概率10%”,是指明天有10%的時(shí)間會(huì)下雨

C.某地發(fā)行一種福利彩票,中獎(jiǎng)率是千分之一,那么,買這種彩票1000張,一定會(huì)中獎(jiǎng)

D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年暑假,小麗爸爸的同事送給她爸爸一張北京故宮的門票,她和哥哥兩人都很想去參觀,可門票只有一張.讀九年級(jí)的哥哥想了一個(gè)辦法,他拿了八張撲克牌,將數(shù)字為1,2,3,5的四張牌給小麗,將數(shù)字為4,6,7,8的四張牌留給自己,并按如下游戲規(guī)則進(jìn)行:小利哥哥從各自的四張牌中隨機(jī)抽出一張,然后將抽出的兩張撲克牌上的數(shù)字相加,如果和為偶數(shù),和小麗去;如果和為奇數(shù),則哥哥去.

(1)請(qǐng)用畫樹狀圖或列表的方法求小麗去北京故宮參觀的概率;

(2)哥哥設(shè)計(jì)的游戲規(guī)則公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)計(jì)了一種促銷活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有0、10、2030的字樣.規(guī)定:顧客在本商場(chǎng)同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回),商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價(jià)格的購物券,可以重新在本商場(chǎng)消費(fèi),某顧客剛好消費(fèi)200元.

1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;

2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案