【題目】周末,小明騎自行車從家里出發(fā)到野外郊游.從家出發(fā)0.5小時后到達甲地,游玩一段時間后按原速前往乙地.小明離家1小時20分鐘后,媽媽駕車沿相同路線前往乙地,如圖是他們離家的路程y(km)與小明離家時間x(h)的函數(shù)圖象.已知媽媽駕車的速度是小明騎車速度的3倍.

(1)求小明騎車的速度和在甲地游玩的時間;
(2)小明從家出發(fā)多少小時后被媽媽追上?此時離家多遠?
(3)若媽媽比小明早10分鐘到達乙地,求從家到乙地的路程.

【答案】
(1)

解:小明騎車速度:

在甲地游玩的時間是1﹣0.5=0.5(h)


(2)

解:媽媽駕車速度:20×3=60(km/h)

設(shè)直線BC解析式為y=20x+b1,

把點B(1,10)代入得b1=﹣10

∴y=20x﹣10

設(shè)直線DE解析式為y=60x+b2,把點D( ,0)

代入得b2=﹣80∴y=60x﹣80…

解得

∴交點F(1.75,25).

答:小明出發(fā)1.75小時(105分鐘)被媽媽追上,此時離家25km


(3)

解:方法一:設(shè)從家到乙地的路程為m(km)

則點E(x1,m),點C(x2,m)分別代入y=60x﹣80,y=20x﹣10

得:

∴m=30.

方法二:設(shè)從媽媽追上小明的地點到乙地的路程為n(km),

由題意得:

∴n=5

∴從家到乙地的路程為5+25=30(km)


【解析】(1)用路程除以時間即可得到速度;在甲地游玩的時間是1﹣0.5=0.5小時.(2)求得線段BC所在直線的解析式和DE所在直線的解析式后求得交點坐標(biāo)即可求得被媽媽追上的時間.(3)設(shè)從媽媽追上小明的地點到乙地的路程為n(km),根據(jù)媽媽比小明早到10分鐘列出有關(guān)n的方程,求得n值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形BCO是三角形BAO經(jīng)過某種變換得到的.

(1)寫出A,C的坐標(biāo);

(2)圖中A與C的坐標(biāo)之間的關(guān)系是什么?

(3)如果三角形AOB中任意一點M的坐標(biāo)為(x,y),那么它的對應(yīng)點N的坐標(biāo)是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,AB=2BC,現(xiàn)給出下列結(jié)論:①sinA= ;②cosB= ;③tanA= ;④tanB= ,其中正確的結(jié)論是(只需填上正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將周長為8的△ABC沿BC方向平移1個單位得到△DEF,則四邊形ABFD的周長為(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像分別與軸、軸交于點、,以線段為邊在第一象限內(nèi)作等腰直角三角形,,則過、兩點的直線對應(yīng)的函數(shù)表達式為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平安加氣站某日8:00的儲氣量為10 000立方米.從8:00開始,3把加氣槍同時以每車20立方米的加氣量,依次給在加氣站排隊等候的若干輛車加氣.8:30時,為緩解排隊壓力,又增開了2把加氣槍.假設(shè)加氣過程中每把加氣槍加氣的速度是勻速的,在不關(guān)閉加氣槍的情況下,加氣站的儲氣量(立方米)與時間(小時)之間的函數(shù)關(guān)系如圖中的折線所示.

(1)分別求出8:00 ~8:30及8:30之后加氣站的儲氣量(立方米)與時間(小時)之間的函數(shù)表達式.

(2)前30輛車能否在當(dāng)天8:42之前加完氣?

(3)若前輛車按上述方式加氣,它們加完氣的時間要比不增開加氣槍加完氣的時間提前1個小時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O△ABC內(nèi)一點,∠A=80°,BO、CO分別是∠ABC∠ACB的角平分線,則∠BOC等于( 。

A. 140° B. 120° C. 130° D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C,D是以線段AB為直徑的⊙O上兩點,若CA=CD,且∠ACD=30°,則∠CAB=(
A.15°
B.20°
C.25°
D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有2個,若從中隨機摸出一個球,這個球是白球的概率為
(1)求袋子中白球的個數(shù);(請通過列式或列方程解答)
(2)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)

查看答案和解析>>

同步練習(xí)冊答案