【題目】問題一:如圖1,已知A,C兩點之間的距離為16 cm,甲,乙兩點分別從相距3cm的A,B兩點同時出發(fā)到C點,若甲的速度為8 cm/s,乙的速度為6 cm/s,設乙運動時間為x(s), 甲乙兩點之間距離為y(cm).
(1)當甲追上乙時,x = .
(2)請用含x的代數(shù)式表示y.
當甲追上乙前,y= ;
當甲追上乙后,甲到達C之前,y= ;
當甲到達C之后,乙到達C之前,y= .
問題二:如圖2,若將上述線段AC彎曲后視作鐘表外圍的一部分,線段AB正好對應鐘表上的弧AB(1小時的間隔),易知∠AOB=30°.
(1)分針OD指向圓周上的點的速度為每分鐘轉(zhuǎn)動 cm;時針OE指向圓周上的點的速度為每分鐘轉(zhuǎn)動 cm.
(2)若從4:00起計時,求幾分鐘后分針與時針第一次重合.
【答案】問題一、(1);(2)3-2x;2x-3;13-6x;問題一、(1);;.
【解析】
問題一根據(jù)等量關(guān)系,路程=速度時間,路程差=路程1-路程2,即可列出方程求解。
問題一:(1)當甲追上乙時,甲的路程=乙的路程+3
所以,
故答案為.
(2) 當甲追上乙前,路程差=乙所行的路程+3-甲所行的路程;
所以,.
當甲追上乙后,甲到達C之前,路程差=甲所行的路程-3-乙所行的路程;
所以,.
當甲到達C之后,乙到達C之前,路程差=總路程-3-乙所行的路程;
所以,.
問題二:(1)由題意AB為鐘表外圍的一部分,且∠AOB=30°
可知,鐘表外圍的長度為
分針OD的速度為
時針OE的速度為
故OD每分鐘轉(zhuǎn)動,OE每分鐘轉(zhuǎn)動.
(2)4點時時針與分針的路程差為
設分鐘后分針與時針第一次重合。
由題意得,
解得,.
即分鐘后分針與時針第一次重合。
科目:初中數(shù)學 來源: 題型:
【題目】某生產(chǎn)小組有名工人,調(diào)查每個工人的日均零件生產(chǎn)能力,獲得如表數(shù)據(jù):
日均生產(chǎn)零件的個數(shù)(個) | ||||||
工人人數(shù)(人) |
求這名工人日均生產(chǎn)零件的眾數(shù)、中位數(shù)、平均數(shù).
為提高工作效率和工人的工作積極性,生產(chǎn)管理者準備實行“每天定額生產(chǎn),超產(chǎn)有獎”的措施,如果你是管理者,你將如何確定這個定額?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究規(guī)律
在數(shù)軸上,把表示數(shù)1的點稱為基準點,記作點O.對于兩個不同點M和N,若點M和點N到點O的距離相等,則稱點M與點N互為基準變換點.例如:圖1中MO=NO=2,則點M和點N互為基準變換點.
發(fā)現(xiàn):(1)已知點A表示數(shù)a,點B表示數(shù)b,點A與點B互為基準變換點.
①若a=0,則b= ;若a=4,則b= ;
②用含a的式子表示b,則b= ;
應用:(2)對點A進行如下操作:先把點A表示的數(shù)乘以,再把所得數(shù)表示的點沿著數(shù)軸向左移動3個單位長度得到點B.若點A與點B互為基準變換,則點A表示的數(shù)是多少?
探究:(3)點P是數(shù)軸上任意一點,對應的數(shù)為m,對P點做如下操作:P點沿數(shù)軸向右移動k(k>0)個單位長度得到P1,P2為P1的基準變換點,點P2沿數(shù)軸向右移動k個單位長度得到點P3,點P4為P3的基準變換點,“…依次順序不斷的重復,得到P6…,求出數(shù)軸上點P2018表示的數(shù)是多少?(用含m的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學的知識,回答下列問題:
(1)小明總共剪開了_______條棱.
(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個長方體紙盒,你認為他應該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在①上補全.
(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個長方體紙盒的底面是一個正方形,并且這個長方體紙盒所有棱長的和是880cm,求這個長方體紙盒的體積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀.拋物線兩端點與水面的距離都是1m,拱橋的跨度為10cm.橋洞與水面的最大距離是5m.橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標系中,如圖(2).求:
(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示,B、C、D三點在同一條直線上,AC=CD,∠B=∠E=90°,AC⊥CD,則不正確的結(jié)論是( 。
A. ∠A與∠D互為余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y是x的二次函數(shù),當x=2時,y=﹣4,當y=4時,x恰為方程2x2﹣x﹣8=0的根.
(1)解方程 2x2﹣x﹣8=0
(2)求這個二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上有點a,b,c三點
(1)用“<”將a,b,c連接起來.
(2)b﹣a 1(填“<”“>”,“=”)
(3)化簡|c﹣b|﹣|c﹣a+1|+|a﹣1|
(4)用含a,b的式子表示下列的最小值:
①|(zhì)x﹣a|+|x﹣b|的最小值為 ;
②|x﹣a|+|x﹣b|+|x+1|的最小值為 ;
③|x﹣a|+|x﹣b|+|x﹣c|的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com