【題目】探究規(guī)律
在數(shù)軸上,把表示數(shù)1的點(diǎn)稱為基準(zhǔn)點(diǎn),記作點(diǎn)O.對(duì)于兩個(gè)不同點(diǎn)M和N,若點(diǎn)M和點(diǎn)N到點(diǎn)O的距離相等,則稱點(diǎn)M與點(diǎn)N互為基準(zhǔn)變換點(diǎn).例如:圖1中MO=NO=2,則點(diǎn)M和點(diǎn)N互為基準(zhǔn)變換點(diǎn).
發(fā)現(xiàn):(1)已知點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,點(diǎn)A與點(diǎn)B互為基準(zhǔn)變換點(diǎn).
①若a=0,則b= ;若a=4,則b= ;
②用含a的式子表示b,則b= ;
應(yīng)用:(2)對(duì)點(diǎn)A進(jìn)行如下操作:先把點(diǎn)A表示的數(shù)乘以,再把所得數(shù)表示的點(diǎn)沿著數(shù)軸向左移動(dòng)3個(gè)單位長(zhǎng)度得到點(diǎn)B.若點(diǎn)A與點(diǎn)B互為基準(zhǔn)變換,則點(diǎn)A表示的數(shù)是多少?
探究:(3)點(diǎn)P是數(shù)軸上任意一點(diǎn),對(duì)應(yīng)的數(shù)為m,對(duì)P點(diǎn)做如下操作:P點(diǎn)沿?cái)?shù)軸向右移動(dòng)k(k>0)個(gè)單位長(zhǎng)度得到P1,P2為P1的基準(zhǔn)變換點(diǎn),點(diǎn)P2沿?cái)?shù)軸向右移動(dòng)k個(gè)單位長(zhǎng)度得到點(diǎn)P3,點(diǎn)P4為P3的基準(zhǔn)變換點(diǎn),“…依次順序不斷的重復(fù),得到P6…,求出數(shù)軸上點(diǎn)P2018表示的數(shù)是多少?(用含m的代數(shù)式表示)
【答案】(1)①2;﹣2;②2﹣a;(2)點(diǎn)A表示的數(shù)是2;(3)點(diǎn)P2018表示的數(shù)為2﹣(m+k).
【解析】
(1)①根據(jù)互為基準(zhǔn)變換點(diǎn)的定義可得出a+b=2,代入數(shù)據(jù)即可得出結(jié)論;②根據(jù)a+b=2,變換后即可得出結(jié)論;
(2)設(shè)點(diǎn)A表示的數(shù)為x,根據(jù)點(diǎn)A的運(yùn)動(dòng)找出點(diǎn)B,結(jié)合互為基準(zhǔn)變換點(diǎn)的定義即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;
(3)根據(jù)點(diǎn)P的變化找出變化規(guī)律,4個(gè)一循環(huán),即可求出點(diǎn)P2018表示的數(shù).
(1)①∵點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,點(diǎn)A與點(diǎn)B互為基準(zhǔn)變換點(diǎn),
∵a+b=2,
當(dāng)a=0時(shí),b=2;當(dāng)a=4時(shí),b=﹣2.
故答案為:2;﹣2.
②∵a+b=2,
∴b=2﹣a.
故答案為:2﹣a;
(2)設(shè)點(diǎn)A表示的數(shù)為x,
根據(jù)題意得:
解得:x=2.
故點(diǎn)A表示的數(shù)是2;
(3)設(shè)點(diǎn)P表示的數(shù)為m,由題意可知:
P1表示的數(shù)為m+k,
P2表示的數(shù)為2﹣(m+k),
P3表示的數(shù)為2﹣m,
P4表示的數(shù)為m,
P5表示的數(shù)為m+k,
…
由此可分析,4個(gè)一循環(huán),
∵2018÷4=504…2,
∴點(diǎn)P2018表示的數(shù)與點(diǎn)P2表示的數(shù)相同,
即點(diǎn)P2018表示的數(shù)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年我縣某校有若干名學(xué)生參加了七年級(jí)數(shù)學(xué)期末測(cè)試,學(xué)校隨機(jī)抽取了考生總數(shù)的10%的學(xué)生數(shù)學(xué)成績(jī),現(xiàn)將他們的成績(jī)分成:A(96分~120分)、B(84分~95分)、C(72分~83分)、D(72分以下)四個(gè)等級(jí)進(jìn)行分析,并根據(jù)成績(jī)得到如下兩個(gè)統(tǒng)計(jì)圖:
(1)在所抽取的考生中,若D級(jí)只有3人:
①請(qǐng)估算該校所有考生中,約有多少人數(shù)學(xué)成績(jī)是D級(jí)?
②考生數(shù)學(xué)成績(jī)的中位數(shù)落在__________等級(jí)中;
(2)有一位同學(xué)在計(jì)算所抽取的考生數(shù)學(xué)成績(jī)的平均數(shù)時(shí),其方法是:==76.25,
問(wèn)這位同學(xué)的計(jì)算正確嗎?若不正確,請(qǐng)你幫他計(jì)算正確的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,的平行線交的延長(zhǎng)線于點(diǎn),交的延長(zhǎng)線于點(diǎn),交于點(diǎn) .
(1)請(qǐng)指出圖中平行四邊形的個(gè)數(shù),并說(shuō)明理由;
(2)與相等嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:,OB,OM,ON是內(nèi)的射線.
如圖1,若OM平分,ON平分當(dāng)射線OB繞點(diǎn)O在內(nèi)旋轉(zhuǎn)時(shí),______度
也是內(nèi)的射線,如圖2,若,OM平分,ON平分,當(dāng)繞點(diǎn)O在內(nèi)旋轉(zhuǎn)時(shí),求的大。
在的條件下,若,當(dāng)在繞O點(diǎn)以每秒的速度逆時(shí)針旋轉(zhuǎn)t秒,如圖3,若::3,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年十一黃金周期間,九寨溝7天中每天旅游人數(shù)的變化情況如下表(正數(shù)表示比9月30日多的人數(shù),負(fù)數(shù)表示比9月30日少的人數(shù)):
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人數(shù)變化/萬(wàn)人 | +0.5 | +0.7 | +0.8 | +0.2 |
(1)、請(qǐng)判斷7天內(nèi)游客人數(shù)量最多和最少的各是哪一天?它們相差多少萬(wàn)人?(5分)
(2)、如果9月30日旅游人數(shù)為2.5萬(wàn)人,平均每人消費(fèi)500元,請(qǐng)問(wèn)風(fēng)景區(qū)在此7天內(nèi)總收入為多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是(請(qǐng)?zhí)钌暇幪?hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等邊三角形,以AB為直徑作⊙O,交BC邊于點(diǎn)D,交AC邊于點(diǎn)F,作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若△ABC的邊長(zhǎng)為4,求EF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題一:如圖1,已知A,C兩點(diǎn)之間的距離為16 cm,甲,乙兩點(diǎn)分別從相距3cm的A,B兩點(diǎn)同時(shí)出發(fā)到C點(diǎn),若甲的速度為8 cm/s,乙的速度為6 cm/s,設(shè)乙運(yùn)動(dòng)時(shí)間為x(s), 甲乙兩點(diǎn)之間距離為y(cm).
(1)當(dāng)甲追上乙時(shí),x = .
(2)請(qǐng)用含x的代數(shù)式表示y.
當(dāng)甲追上乙前,y= ;
當(dāng)甲追上乙后,甲到達(dá)C之前,y= ;
當(dāng)甲到達(dá)C之后,乙到達(dá)C之前,y= .
問(wèn)題二:如圖2,若將上述線段AC彎曲后視作鐘表外圍的一部分,線段AB正好對(duì)應(yīng)鐘表上的弧AB(1小時(shí)的間隔),易知∠AOB=30°.
(1)分針OD指向圓周上的點(diǎn)的速度為每分鐘轉(zhuǎn)動(dòng) cm;時(shí)針OE指向圓周上的點(diǎn)的速度為每分鐘轉(zhuǎn)動(dòng) cm.
(2)若從4:00起計(jì)時(shí),求幾分鐘后分針與時(shí)針第一次重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=x與雙曲線y=(k>0)交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,
(1)求 k的值;
(2)利用圖形直接寫出不等式x>的解;
(3)過(guò)原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P,Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn) A,B,P,Q為頂點(diǎn)組成的四邊形面積為 24,求點(diǎn) P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com