【題目】如圖,已知正方形ABCD的邊長為3,E是邊BC上一點,BE=1,將△ABE,△ADF分別沿折痕AE,AF向內(nèi)折疊,點B,D在點G處重合,過點E作EH⊥AE,交AF的延長線于H,則線段FH的長為_______.
【答案】
【解析】
設(shè)DF=FG=x,在Rt△EFC中,由EF=1+x,EC=3﹣1=2,FC=3﹣x,根據(jù)勾股定理構(gòu)建方程求出x,再求出AF,AH即可解決問題.
解:∵四邊形ABCD是正方形,
∴∠B=∠C=∠D=∠BAD=90°,AB=BC=CD=AD=3,
設(shè)DF=FG=x,
在Rt△EFC中,∵EF=1+x,EC=3﹣1=2,FC=3﹣x,
∴(x+1)2=22+(3﹣x)2,
解得x=
∴AF===,AE===,
由翻折的性質(zhì)可知,∠DAF=∠GAF,∠EAB=∠EAG,
∴∠EAH=45°,
∵EH⊥EA,
∴∠AEH=90°,
∴AE=EH=,AH=AE=2,
∴FH=AH﹣AF=2﹣=,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線y=x2+bx+c經(jīng)過點A(-1,0),B(5,0).
(1)求拋物線的解析式并寫出頂點M的坐標;
(2)若點C在拋物線上,且點C的橫坐標為8,求四邊形AMBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次安全知識測驗中,學(xué)生得分均為整數(shù),滿分10分,成績達到9分為優(yōu)秀,這次測驗中甲、乙兩組學(xué)生人數(shù)相同,成績?nèi)缦陆y(tǒng)計圖:
(1)在乙組學(xué)生成績統(tǒng)計圖中,8分所在的扇形的圓心角為___________度
(2)請補充完整下面的成績統(tǒng)計分析表:
平均數(shù) | 方差 | 眾數(shù) | 中位數(shù) | 優(yōu)秀率 | |
甲組 | 7 | 1.8 | 7 | 7 | |
乙組 | 1.36 |
(3)你認為那組成績較好?從以上信息中寫出兩條支持你的選擇
(4)從甲、乙兩組得9分的學(xué)生中抽取兩人參加市級比賽,求這兩人來自不同組的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=10,AD=4,點E從D向C以每秒1個單位的速度運動,以AE為一邊在AE的左上方作正方形AEFG,同時垂直于CD的直線MN也從C向D以每秒2個單位的速度運動,當(dāng)點F落在直線MN上,設(shè)運動的時間為t,則t的值為( )
A.1B.C.4D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑作圓交AC、BC于點D、E兩點,AF切⊙O于點A,點D是AC中點.
(1)求證:AB=BC;
(2)若,CF=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程隊承接一鐵路工程,在挖掘一條500米長的隧道時,為了盡快完成,實際施工時每天挖掘的長度是原計劃的1.5倍,結(jié)果提前了25天完成了其中300米的隧道挖掘任務(wù).
(1)求實際每天挖掘多少米?
(2)由于氣候等原因,需要進一步縮短工期,要求完成整條隧道不超過70天,那么為了完成剩下的任務(wù),在實際每天挖掘長度的基礎(chǔ)上,至少每天還應(yīng)多挖掘多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.
(1)從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;
(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮和爸爸登山,兩人距地面的高度(米)與小亮登山時間(分)之間的函數(shù)圖象分別如圖中折線和線段所示,根據(jù)函數(shù)圖形進行一下探究:
(1)設(shè)線段所表示的函數(shù)關(guān)系式為,根據(jù)圖象求的值,并寫出的實際意義;
(2)若小亮提速后,他登山的速度是爸爸速度的3倍,問:小亮登山多長時間時開始提速?此時小亮距地面的高度是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線與拋物線交于兩點,其中,.該拋物線與軸交于點,與軸交于另一點.
(1)求的值及該拋物線的解析式;
(2)如圖2.若點為線段上的一動點(不與重合).分別以、為斜邊,在直線的同側(cè)作等腰直角△和等腰直角△,連接,試確定△面積最大時點的坐標.
(3)如圖3.連接、,在線段上是否存在點,使得以為頂點的三角形與△相似,若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com