【題目】如圖,點M是正方形ABCD的邊BC上一點,連接AM,點E是線段AM上一點,∠CDE的平分線交AM延長線于點F.
(1)如圖1,若點E為線段AM的中點,BM:CM=1:2,BE=,求AB的長;
(2)如圖2,若DA=DE,求證:BF+DF=AF.
【答案】(1)AB=6;(2)證明見解析.
【解析】
(1)設(shè)BM=x,則CM=2x,BC=BA=3x;在Rt△ABM中,E為斜邊AM中點,根據(jù)直角三角形斜邊的中線等于斜邊的一半可得AM=2BE=2.由勾股定理可得AM2=MB2+AB2,即可得40=x2+9x2,解得x=2.所以AB=3x=6;(2)延長FD交過點A作垂直于AF的直線于H點,過點D作DP⊥AF于P點.證明△ABF≌△ADH,根據(jù)全等三角形的性質(zhì)可得AF=AH,BF=DH.再由Rt△FAH是等腰直角三角形,可得HF=AF.由HF=DH+DF=BF+DF,可得BF+DF=AF.
解:(1)設(shè)BM=x,則CM=2x,BC=3x,
∵BA=BC,
∴BA=3x.
在Rt△ABM中,E為斜邊AM中點,
∴AM=2BE=2.
由勾股定理可得AM2=MB2+AB2,
即40=x2+9x2,解得x=2.
∴AB=3x=6.
(2)延長FD交過點A作垂直于AF的直線于H點,過點D作DP⊥AF于P點.
∵DF平分∠CDE,
∴∠1=∠2.
∵DE=DA,DP⊥AF
∴∠3=∠4.
∵∠1+∠2+∠3+∠4=90°,
∴∠2+∠3=45°.
∴∠DFP=90°﹣45°=45°.
∴AH=AF.
∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,
∴∠BAF=∠DAH.
又AB=AD,
∴△ABF≌△ADH(SAS).
∴AF=AH,BF=DH.
∵Rt△FAH是等腰直角三角形,
∴HF=AF.
∵HF=DH+DF=BF+DF,
∴BF+DF=AF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線AB∥CD,點M,N分別在直線AB,CD上,點E為平面內(nèi)一點.
(1)如圖1,∠BME,∠E,∠END的數(shù)量關(guān)系為 (直接寫出答案);
(2)如圖2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度數(shù)(用用含m的式子表示)
(3)如圖3,點G為CD上一點,∠BMN=n·∠EMN,∠GEK=n·∠GEM,EH∥MN交AB于點H,探究∠GEK,∠BMN,∠GEH之間的數(shù)量關(guān)系(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
若一個整數(shù)能表示成a2+b2(a、b是整數(shù))的形式,則稱這個數(shù)為“平和數(shù)”,例如5是“平和數(shù)”,因為5=22+1,再如,M=x2+2xy+2y2=(x+y)2+y2(x,y是整數(shù)),我們稱M也是“平和數(shù)”.
(1)請你寫一個小于5的“平和數(shù)”,并判斷34是否為“平和數(shù)”.
(2)已知S=x2+9y2+6x﹣6y+k(x,y是整數(shù),k是常數(shù),要使S為“平和數(shù)”,試求出符合條件的一個k值,并說明理由.
(3)如果數(shù)m,n都是“平和數(shù)”,試說明也是“平和數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,OA=90cm,OB=30cm,一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O,機器人立即從點B出發(fā),沿直線勻速前進(jìn)攔截小球,恰好在點C處截住了小球.如果小球滾動的速度與機器人行走的速度相等,那么機器人行走的路程BC是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,是的中線,為的中點,過點作與的延長線相交于點,連接.
(1)如圖1,求證:四邊形是平行四邊形;
(2)如圖2,若,請直接寫出圖中所有的等腰三角形,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰ΔABC中,∠CAB=90°AB=AC,P為ΔABC內(nèi)的一點,且PA=AQ=1,CQ=BP=3,CP=,求∠APC的大小.(提示:連接PQ)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC邊長為20,點D的坐標(biāo)為(,0),且以OD、DE為鄰邊作長方形ODEF.
(1)請直接寫出以下點的坐標(biāo):E_____,F______ (用含的式子表示);
(2)設(shè)長方形ODEF與正方形OABC重疊部分面積為S,求S(用含的式子表示);
(3)S的值能否等于300,若能請求出此時的值;若不能,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要在平行四邊形內(nèi)作一個菱形.甲,乙兩位同學(xué)的作法分別如下:
對于甲乙兩人的作法,可判斷( )
A.甲正確,乙錯誤B.甲錯誤,乙正確C.甲,乙均正確D.甲、乙均錯誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上有點A(1,0),點A第一次跳動至點A1(-1,1),第二次跳動至點A2(2,1),第三次跳動至點A3(-2,2),第四次向右跳動5個單位至點A4(3,2),………,依此規(guī)律跳動下去,點A第100次跳動至點A100的坐標(biāo)是________;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com