【題目】如圖,要在平行四邊形內(nèi)作一個(gè)菱形.甲,乙兩位同學(xué)的作法分別如下:

對于甲乙兩人的作法,可判斷( )

A.甲正確,乙錯(cuò)誤B.甲錯(cuò)誤,乙正確C.甲,乙均正確D.甲、乙均錯(cuò)誤

【答案】C

【解析】

甲:首先證明△AOE≌△COFASA),可得AE=CF,再根據(jù)一組對邊平行且相等的四邊形是平行四邊形可判定四邊形AECF是平行四邊形,再由ACEF,可根據(jù)對角線互相垂直的四邊形是菱形判定出AECF是菱形;乙:四邊形ABCD是平行四邊形,可根據(jù)角平分線的定義和平行線的定義,求得AB=AF,所以四邊形ABEF是菱形.

甲的作法正確,

證明:∵四邊形ABCD是平行四邊形,

ADBC

∴∠DAC=ACB,

EFAC的垂直平分線,

AO=CO,

在△AOE和△COF中,

,

∴△AOE≌△COFASA),

AE=CF

又∵AECF,

∴四邊形AFCE是平行四邊形,

EFAC,

∴四邊形AFCE是菱形;

乙的作法正確;

證明:∵ADBC,

∴∠1=2,∠6=7,

BF平分∠ABC,AE平分∠BAD,

∴∠2=3,∠5=6,

∴∠1=3,∠5=7,

AB=AFAB=BE,

AF=BE,

AFBE,且AF=BE

∴四邊形ABEF是平行四邊形,

AB=AF,

∴平行四邊形ABEF是菱形;

故甲、乙做法均正確.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)得到矩形GBEF,點(diǎn)A落在矩形ABCD的邊CD上,連接CE,則CE的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)M是正方形ABCD的邊BC上一點(diǎn),連接AM,點(diǎn)E是線段AM上一點(diǎn),∠CDE的平分線交AM延長線于點(diǎn)F

(1)如圖1,若點(diǎn)E為線段AM的中點(diǎn),BMCM12BE,求AB的長;

(2)如圖2,若DADE,求證:BF+DFAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李梅同學(xué)要證明命題兩組對邊分別相等的四邊形是平行四邊形是正確的,她先用尺規(guī)作出了如圖1的四邊形,并寫出了如下不完整的已知和求證.

已知:如圖1,在四邊形中,,

求證:四邊形 四邊形.

1)填空,補(bǔ)全已知和求證;

2)按李梅的想法寫出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點(diǎn)E為△ABC的內(nèi)心,連接AE并延長交⊙O于D點(diǎn),連接BD并延長至F,使得BD=DF,連接CF、BE.

(1)求證:DB=DE;
(2)求證:直線CF為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠有甲種原料130kg,乙種原料144kg.現(xiàn)用這兩種原料生產(chǎn)出A,B兩種產(chǎn)品共30件.已知生產(chǎn)每件A產(chǎn)品需甲種原料5kg,乙種原料4kg,且每件A產(chǎn)品可獲利700元;生產(chǎn)每件B產(chǎn)品需甲種原料3kg,乙種原料6kg,且每件B產(chǎn)品可獲利900元.設(shè)生產(chǎn)A產(chǎn)品x件(產(chǎn)品件數(shù)為整數(shù)件),根據(jù)以上信息解答下列問題:
(1)生產(chǎn)A,B兩種產(chǎn)品的方案有哪幾種;
(2)設(shè)生產(chǎn)這30件產(chǎn)品可獲利y元,寫出y關(guān)于x的函數(shù)解析式,寫出(1)中利潤最大的方案,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線MNBC.設(shè)MN交ACB的平分線于點(diǎn)E,交ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,BD⊥AC于點(diǎn)D ,點(diǎn)E為線段BC的中點(diǎn),AD=2,tan A=2.

(1)求AB的長;
(2)求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先將△ABC向上平移3個(gè)單位長度,再向右平移2個(gè)單位長度,得到A1B1C1

(1)在圖中畫出△A1B1C1;
(2)點(diǎn)A1 , B1 , C1的坐標(biāo)分別為、;
(3)若y軸有一點(diǎn)P,使△PBC與△ABC面積相等,求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案