【題目】如圖,在Rt△ABC中,∠ABC=90°,BD⊥AC于點(diǎn)D ,點(diǎn)E為線段BC的中點(diǎn),AD=2,tan A=2.

(1)求AB的長;
(2)求DE的長.

【答案】
(1)解:∵BD⊥AC,且tan A=2.
,
∵AD=2,
∴BD=4,
∴AB=
(2)解:在Rt△ABC中,
∵∠ABC=90°,且tan A=2.
,
∵AB= ,
∴BC=
∵BD⊥AC,且E點(diǎn)為線段BC的中點(diǎn),
∴DE= BC=
【解析】利用∠ABD的正切值求出BD的長,再利用勾股定理列式進(jìn)行計(jì)算即可求出AB;根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得DE=CE,再根據(jù)等邊對等角的性質(zhì)可得∠EDC=∠C,再根據(jù)同角的余角相等求出∠C=∠ABD,然后根據(jù)銳角的正弦等于對邊比斜邊列式進(jìn)行計(jì)算即可得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AOB=90°,OA=90cmOB=30cm,一機(jī)器人在點(diǎn)B處看見一個(gè)小球從點(diǎn)A出發(fā)沿著AO方向勻速滾向點(diǎn)O,機(jī)器人立即從點(diǎn)B出發(fā)沿直線勻速前進(jìn)攔截小球,恰好在點(diǎn)C處截住了小球如果小球滾動(dòng)的速度與機(jī)器人行走的速度相等,那么機(jī)器人行走的路程BC是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要在平行四邊形內(nèi)作一個(gè)菱形.甲,乙兩位同學(xué)的作法分別如下:

對于甲乙兩人的作法,可判斷( )

A.甲正確,乙錯(cuò)誤B.甲錯(cuò)誤,乙正確C.甲,乙均正確D.甲、乙均錯(cuò)誤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程組及不等式組,并把不等式組的解集在數(shù)軸上表示出來.

(1) ;

(2);

(3) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD內(nèi)找一點(diǎn)O,使它到四邊形四個(gè)頂點(diǎn)的距離之和OA+OB+OC+OD最小,并說明你作圖的理論依據(jù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),在BA邊上以每秒5cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在CB邊上以每秒4cm的速度向點(diǎn)B勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0<t<2),連接PQ.

(1)若△BPQ與△ABC相似,求t的值;
(2)連接AQ、CP,若AQ⊥CP,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系上有點(diǎn)A10),點(diǎn)A第一次跳動(dòng)至點(diǎn)A1-11),第二次跳動(dòng)至點(diǎn)A22,1),第三次跳動(dòng)至點(diǎn)A3-22),第四次向右跳動(dòng)5個(gè)單位至點(diǎn)A432),………,依此規(guī)律跳動(dòng)下去,點(diǎn)A100次跳動(dòng)至點(diǎn)A100的坐標(biāo)是________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,已知A(2,2)、B(4,0).若在坐標(biāo)軸上取點(diǎn)C,使△ABC為等腰三角形,則滿足條件的點(diǎn)C的個(gè)數(shù)是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,若大正方形的邊長為a,小正方形的邊長為b,則陰影部分的面積是   ;若如圖中的陰影部分剪下來,重新拼疊成如圖的一個(gè)矩形,則它長為   ;寬為   ;面積為   

2)由(1)可以得到一個(gè)公式:   

3)利用你得到的公式計(jì)算:201922018×2020

查看答案和解析>>

同步練習(xí)冊答案