【題目】如圖①,AE是⊙O的直徑,點(diǎn)C是⊙O上的點(diǎn),連結(jié)AC并延長(zhǎng)AC至點(diǎn)D,使CD=CA,連結(jié)ED交⊙O于點(diǎn)B.
(1)求證:點(diǎn)C是劣弧 的中點(diǎn);
(2)如圖②,連結(jié)EC,若AE=2AC=4,求陰影部分的面積.
【答案】
(1)解:連接CE,
∵AE是⊙O的直徑,
∴CE⊥AD,
∵AC=CD,
∴AE=ED,
∴∠AEC=∠DEC,
∴ ;
∴點(diǎn)C是劣弧 的中點(diǎn);
(2)連接BC,OB,OC,
∵AE=2AC=4,
∴∠AEC=30°,AE=AD,
∴∠AED=60°,
∴△AED是等邊三角形,
∴∠A=60°,
∵ = ,
∴ = = ,
∴AE∥BC,∠BOC=60°,
∴S△OBC=S△EBC,
∴S陰影=S扇形= = π.
【解析】(1)連接CE,由AE是⊙O的直徑,得到CE⊥AD,根據(jù)等腰三角形的性質(zhì)得到∠AEC=∠DEC,于是得到結(jié)論;(2)連接BC,OB,OC,由已知條件得到△AED是等邊三角形,得到∠A=60°,推出AE∥BC,∠BOC=60°,于是得到結(jié)論.
【考點(diǎn)精析】掌握?qǐng)A周角定理和扇形面積計(jì)算公式是解答本題的根本,需要知道頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.
求證:(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新定義函數(shù):在y關(guān)于x的函數(shù)中,若0≤x≤1時(shí),函數(shù)y有最大值和最小值,分別記ymax和ymin , 且滿足 ,則我們稱函數(shù)y為“三角形函數(shù)”.
(1)若函數(shù)y=x+a為“三角形函數(shù)”,求a的取值范圍;
(2)判斷函數(shù)y=x2﹣ x+1是否為“三角形函數(shù)”,并說(shuō)明理由;
(3)已知函數(shù)y=x2﹣2mx+1,若對(duì)于0≤x≤1上的任意三個(gè)實(shí)數(shù)a,b,c所對(duì)應(yīng)的三個(gè)函數(shù)值都能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則求滿足條件的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.請(qǐng)你認(rèn)真閱讀下面關(guān)于這個(gè)圖的探究片段,完成所提出的問(wèn)題.
(1)探究1:小強(qiáng)看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AE和EF所在的兩個(gè)三角形全等,但△ABE和△ECF顯然不全等(一個(gè)是直角三角形,一個(gè)是鈍角三角形),考慮到點(diǎn)E是邊BC的中點(diǎn),因此可以選取AB的中點(diǎn)M,連接EM后嘗試著去證△AEM≌EFC就行了,隨即小強(qiáng)寫(xiě)出了如下的證明過(guò)程:
證明:如圖1,取AB的中點(diǎn)M,連接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵點(diǎn)E,M分別為正方形的邊BC和AB的中點(diǎn)
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分線
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小強(qiáng)繼續(xù)探索,如圖2,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn)”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請(qǐng)你證明這一結(jié)論.
(3)探究3:小強(qiáng)進(jìn)一步還想試試,如圖3,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC延長(zhǎng)線上的一點(diǎn)”,其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請(qǐng)你完成證明過(guò)程給小強(qiáng)看,若不成立請(qǐng)你說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在平面直角坐標(biāo)系中,直線y=﹣x+4交坐標(biāo)軸于A、B兩點(diǎn),過(guò)點(diǎn)C(﹣4,0)作CD⊥AB于D,交y軸于點(diǎn)E.
(1)求證:△COE≌△BOA;
(2)如圖2,點(diǎn)M是線段CE上一動(dòng)點(diǎn)(不與點(diǎn)C、E重合),ON⊥OM交AB于點(diǎn)N,連接MN.
①判斷△OMN的形狀.并證明;
②當(dāng)△OCM和△OAN面積相等時(shí),求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線分別與軸、軸交于C、D兩點(diǎn),與反比例函數(shù)的圖像相交于點(diǎn)和點(diǎn),過(guò)點(diǎn)A作AM⊥y軸于點(diǎn)M,過(guò)點(diǎn)B作BN⊥x軸于點(diǎn)N,連結(jié)MN、OA、OB.下列結(jié)論:
①;②;③四邊形與四邊形MNCA的周長(zhǎng)相等;④.其中正確的個(gè)數(shù)是( )個(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,∠ACB=90°,AC=BC= ,D、E是AB邊上的兩個(gè)動(dòng)點(diǎn),滿足∠DCE=45°.
(1)如圖②,把△ADC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△BKC,連結(jié)EK.
①求證:△DCE≌△KCE.
②求證:DE2=AD2+BE2 .
③思考與探究:當(dāng)點(diǎn)D從點(diǎn)A向AB的中點(diǎn)運(yùn)動(dòng)的過(guò)程中,請(qǐng)嘗試寫(xiě)出DE長(zhǎng)度的變化趨勢(shì) ;并直接寫(xiě)出DE長(zhǎng)度的最大值或最小值 (標(biāo)明最大值或最小值).
(2)如圖③,若△CDE的外接圓⊙O分別交AC,BC于點(diǎn)F、G,求證:CF:CG=BE:AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點(diǎn)D,點(diǎn)P是BA延長(zhǎng)線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OP=OC.
(1)求∠APO+∠DCO的度數(shù);
(2)求證:點(diǎn)P在OC的垂直平分線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)下面四個(gè)圖分別由六個(gè)相同的正方形拼接而成,其中不能折(從A、B、C、D選擇)的是_________.
(2)用斜二側(cè)畫(huà)法補(bǔ)畫(huà)圖1的圖形,使之成為長(zhǎng)方體的直觀圖(虛線表示被遮住的線段;只要在已有圖形基礎(chǔ)上畫(huà)出長(zhǎng)方體,不必寫(xiě)畫(huà)法步驟).
(3)在這一長(zhǎng)方體中,從同一個(gè)頂點(diǎn)出發(fā)的三個(gè)面的面積之比是5:7:2,其中最大的比最小的面積大60cm2,求這個(gè)長(zhǎng)方體的表面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com