【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點(diǎn)D,點(diǎn)P是BA延長線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OP=OC.
(1)求∠APO+∠DCO的度數(shù);
(2)求證:點(diǎn)P在OC的垂直平分線上.
【答案】(1)30°;(2)見解析
【解析】
(1)利用等邊對等角,即可證得:∠APO=∠ABO,∠DCO=∠DBO,則∠APO+∠DCO=∠ABO+∠DBO=∠ABD,據(jù)此即可求解;
(2)根據(jù)角的關(guān)系,證明∠POC=60°且OP=OC,即可證得△OPC是等邊三角形,進(jìn)而解答即可.
(1)如圖1,連接OB,
∵AB=AC,AD⊥BC,
∴BD=CD,∠BAD=∠BAC=×120°=60°,
∴OB=OC,∠ABC=90°﹣∠BAD=30°
∵OP=OC,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DCO=∠DBO,
∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;
(2)∵∠APC+∠DCP+∠PBC=180°,
∴∠APC+∠DCP=150°,
∵∠APO+∠DCO=30°,
∴∠OPC+∠OCP=120°,
∴∠POC=180°﹣(∠OPC+∠OCP)=60°,
∵OP=OC,
∴△OPC是等邊三角形,
∴OP=PC,
∴點(diǎn)P在OC的垂直平分線上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某花木公司在20天內(nèi)銷售一批馬蹄蓮.其中,該公司的鮮花批發(fā)部日銷售量y1(萬朵)與時間x(x為整數(shù),單位:天)部分對應(yīng)值如下表所示.
時間x(天) | 0 | 4 | 8 | 12 | 16 | 20 |
銷量y1(萬朵) | 0 | 16 | 24 | 24 | 16 | 0 |
另一部分鮮花在淘寶網(wǎng)銷售,網(wǎng)上銷售日銷售量y2(萬朵)與時間x(x為整數(shù),單位:天) 關(guān)系如圖所示.
(1)請你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與x的變化規(guī)律,寫出y1與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)觀察馬蹄蓮網(wǎng)上銷售量y2與時間x的變化規(guī)律,請你設(shè)想商家采用了何種銷售策略使得銷售量發(fā)生了變化,并寫出銷售量y2與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)設(shè)該花木公司日銷售總量為y萬朵,寫出y與時間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,AE是⊙O的直徑,點(diǎn)C是⊙O上的點(diǎn),連結(jié)AC并延長AC至點(diǎn)D,使CD=CA,連結(jié)ED交⊙O于點(diǎn)B.
(1)求證:點(diǎn)C是劣弧 的中點(diǎn);
(2)如圖②,連結(jié)EC,若AE=2AC=4,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的兩條高線BD,CE相交于點(diǎn)F,已知∠ABC=60°,AB=10,CF=EF,則△ABC的面積為( )
A.20
B.25
C.30
D.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點(diǎn)P,過P作PF⊥AD交BC的延長線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,M是等邊△ABC邊BC上的點(diǎn),如圖,連接AM,過點(diǎn)M作∠AMH=60°,MH與∠ACB的鄰補(bǔ)角的平分線交于點(diǎn)H,過H作HD⊥BC于點(diǎn)D
(1)求證:MA=MH
(2)猜想寫出CB、CM、CD之間的數(shù)量關(guān)系式,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在直角三角形ABC中,邊AC長4cm,邊BC長3cm,邊AB長5cm.
(1)三角形繞著邊AC旋轉(zhuǎn)一周,所得幾何體的體積和繞著邊BC旋轉(zhuǎn)一周所得幾何體體積是否一樣?通過計算說明;
(2)若繞著邊AB旋轉(zhuǎn)一周,所得的幾何體的體積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請直接寫出因式分解的最后結(jié)果_________ .
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件.已知生產(chǎn)一件A種產(chǎn)品需用甲種原料9千克、乙種原料3千克,可獲利潤700元;生產(chǎn)一件B種產(chǎn)品需用甲種原料4千克、乙種原料10千克,可獲利潤1200元。設(shè)生產(chǎn)A種產(chǎn)品的生產(chǎn)件數(shù)為x, A、B兩種產(chǎn)品所獲總利潤為y (元)
(1)試寫出y與x之間的函數(shù)關(guān)系式;
(2)求出自變量x的取值范圍;
(3)利用函數(shù)的性質(zhì)說明哪種生產(chǎn)方案獲總利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com