【題目】如圖,已知△ABC和△DEC都是等邊三角形,∠ACB=∠DCE=60°,B、C、E在同一直線(xiàn)上,連結(jié)BD和AE
(1)求證:AE=BD
(2)求∠AHB的度數(shù)
(3)求證:DF=GE
【答案】(1)見(jiàn)解析(2)60°(3)見(jiàn)解析
【解析】
(1)證明:∵△ABC與△DEC都是等邊三角形,
∴∠ACB=∠DCE=60°,
∴∠BCD=∠ACE,
在△BCD和△ACE中,
BC=AC,∠BCD=∠ACE,CD=CE,
∴△BCD≌△ACE(SAS),
∴AE=BD;
(2)由(1)得△BCD≌△ACE,
∴∠CAE=∠CBD,
又∵∠CBD+∠DBA=60°
∴∠CAE+∠ABD=60°.
在△ABH中,∠BAC+∠ABD+∠CAE+∠AHB=180°
∴∠AHB=60°;
(3)證明:由(1)證得:△BCD≌△ACE,
∴∠BDC=∠AEC,
∵∠ACB=∠DCE=60°,且B. C.E在同一直線(xiàn)上,
∴∠ACD=60°,
∵DCE是等邊三角形,
∴DC=CE.
在△DFC和△EGC中,
∠DCF=∠DCE,DC=EC,∠FDC=∠CEG,
∴△DFC≌△EGC(ASA)
∴DF=EG,
即DF=GE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的角平分線(xiàn),、分別是邊、的中點(diǎn),連接、,在不再連接其他線(xiàn)段的前提下,要使四邊形成為菱形,還需添加一個(gè)條件,這個(gè)條件不可能是( )
A. BD=DC B. AB=AC
C. AD=BC D. AD⊥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】凸四邊形的四個(gè)頂點(diǎn)滿(mǎn)足:每一個(gè)頂點(diǎn)到其他三個(gè)頂點(diǎn)距離之積都相等.則四邊形一定是( )
A. 正方形 B. 菱形 C. 等腰梯形 D. 矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD⊥BC于D,若BD=AD,F(xiàn)D=CD.
(1)求證:∠FBD=∠CAD;
(2)求證:BE⊥AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=13,AD是中線(xiàn),且AD=6.
(1)延長(zhǎng)AD到E,使DE=AD,連結(jié)CE.
①結(jié)合提示畫(huà)出圖形;
②結(jié)合圖形寫(xiě)出你認(rèn)為正確的兩條結(jié)論,并選其中一條加以證明;
(2)請(qǐng)直接寫(xiě)出所求的線(xiàn)段BC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某建筑工程隊(duì),在工地一邊的靠墻處,用120米長(zhǎng)的鐵柵欄圍成一個(gè)所占地面為長(zhǎng)方形的臨時(shí)倉(cāng)庫(kù),鐵柵欄只圍三邊,按下列要求,分別求長(zhǎng)方形的兩條鄰邊的長(zhǎng).
(1)長(zhǎng)方形的面積是1152平方米
(2)長(zhǎng)方形的面積是1800平方米
(3)長(zhǎng)方形的面積是2000平方米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,,若動(dòng)點(diǎn)從點(diǎn)開(kāi)始,按的路徑運(yùn)動(dòng)一周,且速度為每秒,設(shè)運(yùn)動(dòng)的時(shí)間為秒.
()求為何值時(shí),把的周長(zhǎng)分成相等的兩部分
()求為何值時(shí),把的面積分成相等的兩部分;并求此時(shí)的長(zhǎng).
()求為何值時(shí),為等腰三角形?(請(qǐng)直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)(學(xué)習(xí)心得)
小剛同學(xué)在學(xué)習(xí)完“圓”這一章內(nèi)容后,感覺(jué)到一些幾何問(wèn)題,如果添加輔助圓,運(yùn)用圓的知識(shí)解決,可以使問(wèn)題變得非常容易.
例如:如圖1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一點(diǎn),且AD=AC,求∠BDC的度數(shù),若以點(diǎn)A為圓心,AB為半徑作輔助圓⊙A,則點(diǎn)C、D必在⊙A上,∠BAC是⊙A的圓心角,而∠BDC是圓周角,從而可容易得到∠BDC= °.
(2)(問(wèn)題解決)
如圖2,在四邊形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度數(shù).
小剛同學(xué)認(rèn)為用添加輔助圓的方法,可以使問(wèn)題快速解決,他是這樣思考的:△ABD的外接圓就是以BD的中點(diǎn)為圓心,BD長(zhǎng)為半徑的圓;△ACD的外接圓也是以BD的中點(diǎn)為圓心,BD長(zhǎng)為半徑的圓.這樣A、B、C、D四點(diǎn)在同一個(gè)圓上,進(jìn)而可以利用圓周角的性質(zhì)求出∠BAC的度數(shù),請(qǐng)運(yùn)用小剛的思路解決這個(gè)問(wèn)題.
(3)(問(wèn)題拓展)
如圖3,在△ABC中,∠BAC=45°,AD是BC邊上的高,且BD=4,CD=2,求AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com