【題目】某校為了開展陽光體育運(yùn)動,計劃購買籃球、足球共60個,已知每個籃球的價格為70元,每個足球的價格為80.

1)若購買這兩類球的總金額為4600元,求籃球、足球各買了多少個?

2)若購買籃球的總金額不超過購買足球的總金額,求最多可購買多少個籃球?

【答案】1)籃球、足球各買了20個,40個;(2)最多可購買籃球32.

【解析】

(1)設(shè)籃球、足球各買了個,根據(jù)等量關(guān)系:籃球、足球共60個,籃球、足球共用4600元,列出方程組,解方程組即可得;

(2)設(shè)購買了個籃球,根據(jù)購買籃球的總金額不超過購買足球的總金額,列出不等式進(jìn)行求解即可.

(1)設(shè)籃球、足球各買了,個,根據(jù)題意,得

,

解得

答:籃球、足球各買了20個,40個;

(2)設(shè)購買了個籃球,根據(jù)題意,得

,

解得,

最多可購買籃球32.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BOC9°,點(diǎn)AOB上,且OA1,按下列要求畫圖:以A為圓心,1為半徑向右畫弧交OC于點(diǎn)A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點(diǎn)A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點(diǎn)A3,得第3條線段A2A3;再以A3為圓心,1為半徑向右畫弧交OB于點(diǎn)A4,得第4條線段A3A4;…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n的值是( 。

A. 6B. 7C. 8D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象開口向上,對稱軸為直線x=1,圖象經(jīng)過(3,0).下列結(jié)論中,正確的一項是( )

A. <0
B. <0
C. <0
D.4acb20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為2,以點(diǎn)A為圓心,1為半徑作圓,E是⊙A上的任意一點(diǎn),將點(diǎn)E繞點(diǎn)D按逆時針方向轉(zhuǎn)轉(zhuǎn)90°得到點(diǎn)F,則線段AF的長的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】潼南綠色無公害蔬菜基地有甲、乙兩種植戶,他們種植了A、B兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:

種植戶

種植A類蔬菜面積

(單位:畝)

種植B類蔬菜面積

(單位:畝)

總收入

(單位:元)

3

1

12500

2

3

16500

說明:不同種植戶種植的同類蔬菜每畝平均收入相等.

(1)求A、B兩類蔬菜每畝平均收入各是多少元?

(2)某種植戶準(zhǔn)備租20畝地用來種植A、B兩類蔬菜,為了使總收入不低于63000元,且種植A類蔬菜的面積多于種植B類蔬菜的面積(兩類蔬菜的種植面積均為整數(shù)),求該種植戶所有租地方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列解題過程,然后解答后面兩個問題.

解方程:|x-3|=2

解:當(dāng)x-3≥0時,原方程可化為x-3=2,解得x=5

當(dāng)x-30時,原方程可化為x-3=-2,解得x=1

所以原方程的解是x=5x=1

1)解方程:|3x-2|-4=0

2)解關(guān)于x的方程:|x-2|=b+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶某著名景區(qū)依托天然河道新開發(fā)了一款乘船體驗項目.小明乘船由甲地順流而下到乙地,然后由乙地逆流而上到丙地,然后靠岸乘車離開景點(diǎn).若水流速度為2km/小時,船在靜水中的速度為8km/小時.在整個乘船過程中,輪船與甲地相距的路程S(千米)與輪船出發(fā)的時間t(小時)之間的關(guān)系如圖所示,甲乙兩地間的距離為_____千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計算:﹣12+(π3.14)0()2+;

(2)先化簡,再求值:[(2x+y)(2xy)+(x+y)22(2x2xy)]÷(x),其中xy滿足+(y+4)2=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖并填空:如圖,每個小正方形的邊長為1個單位,每個小正方形的頂點(diǎn)叫格點(diǎn).

(1)將△ABC向左平移4格,再向下平移1格,請在圖中畫出平移后的△A'B'C';

(2)利用網(wǎng)格線在圖中畫出△ABC的中線CD,高線AE

(3)A'B'C'的面積為   

查看答案和解析>>

同步練習(xí)冊答案