【題目】如圖,四邊形中,,,,設(shè)的長(zhǎng)為,四邊形的面積為,則與之間的函數(shù)關(guān)系式是________.
【答案】
【解析】
作DF⊥AC垂足為F點(diǎn),易證△ABC≌△ADF,根據(jù)全等三角形的性質(zhì)可得BC=AF,AC=DF,設(shè)BC=AF =a,則DF= AC=4BC=4a,CF=AC-AF =3a,在Rt△CDF中,由勾股定理求得a=,根據(jù)y=S△ABC+S△ACD即可求得與之間的函數(shù)關(guān)系式.
作DF⊥AC垂足為F點(diǎn),∴∠AFD=90°,
∵∠BAD=∠AFD =90°,即∠BAC+∠CAD=∠CAD+∠ADF,
∴∠BAC=∠ADF,
又∵AB=AD,∠ACB=∠AFD=90°
∴△ABC≌△ADF(AAS)
∴BC=AF,AC=DF,
設(shè)BC=AF =a,則DF= AC=4BC=4a,
CF=AC-AF =3a,
在Rt△CDF中,由勾股定理得,
CF2+DF2=CD2,即(3a)2+(4a)2=x2,
解得:a=,
∴y=S△ABC+S△ACD=BC·AC+DF·AC=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知等邊△ABC的兩個(gè)頂點(diǎn)的坐標(biāo)為A(-4,0),B(2,0).
(1)用尺規(guī)作圖作出點(diǎn)C,并求出點(diǎn)C的坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,兩個(gè)三角形的頂點(diǎn)都在格點(diǎn)(網(wǎng)線的交點(diǎn))上,下列方案中不能把△ABC平移至△DEF位置的是( )
A.先把△ABC沿水平方向向右平移4個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度
B.先把△ABC向上平移3個(gè)單位長(zhǎng)度,再沿水平方向向右平移4個(gè)單位長(zhǎng)度
C.把△ABC沿BE方向移動(dòng)5個(gè)單位長(zhǎng)度
D.把△ABC沿BE方向移動(dòng)6個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:x2﹣6x=(x2﹣6x+9)﹣9=(x﹣3)2﹣9;﹣x2+10=﹣(x2﹣10x+25)+25=﹣(x﹣5)2+25,這一種方法稱(chēng)為配方法,利用配方法請(qǐng)解以下各題:
(1)按上面材料提示的方法填空:a2﹣4a= = .﹣a2+12a= = .
(2)探究:當(dāng)a取不同的實(shí)數(shù)時(shí)在得到的代數(shù)式a2﹣4a的值中是否存在最小值?請(qǐng)說(shuō)明理由.
(3)應(yīng)用:如圖.已知線段AB=6,M是AB上的一個(gè)動(dòng)點(diǎn),設(shè)AM=x,以AM為一邊作正方形AMND,再以MB、MN為一組鄰邊作長(zhǎng)方形MBCN.問(wèn):當(dāng)點(diǎn)M在AB上運(yùn)動(dòng)時(shí),長(zhǎng)方形MBCN的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;否則請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=100°,點(diǎn)D在BC邊上,△ABD和△AFD關(guān)于直線AD對(duì)稱(chēng),∠FAC的平分線交BC于點(diǎn)G,連接FG.
(1)求∠DFG的度數(shù);
(2)設(shè)∠BAD=θ,
①當(dāng)θ為何值時(shí),△DFG為等腰三角形;
②△DFG有可能是直角三角形嗎?若有,請(qǐng)求出相應(yīng)的θ值;若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC平分∠BCD,AB=AD, AE⊥BC于E,AF⊥CD于F
(1)若∠ABE= 50° ,求∠CDA的度數(shù).
(2)若AE=4,BE=2,CD=6,求四邊形AECD 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,以□ABCD的頂點(diǎn)A為圓心,AB為半徑作圓,分別交AD,BC于點(diǎn)E、F,延長(zhǎng)BA交⊙A于G.
(1)求證:.
(2)若的度數(shù)為70°,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①所示,某乘客乘高速列車(chē)從甲地經(jīng)過(guò)乙地到丙地,假設(shè)列車(chē)勻速行駛.如圖②表示列車(chē)離乙地路程y(千米)與列車(chē)從甲出發(fā)后行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系圖像.
(1)甲、丙兩地間的路程為千米;
(2)求高速列車(chē)離乙地的路程y與行駛時(shí)間x之間的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(3)當(dāng)行駛時(shí)間x在什么范圍時(shí),高速列車(chē)離乙地的路程不超過(guò)100千米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com